
Dong-Yu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603393/publications.pdf Version: 2024-02-01

<u> Πονς-Υμ</u>

#	Article	IF	CITATIONS
1	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.	14.6	193
2	A pH/Ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials, 2020, 230, 119636.	11.4	164
3	AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Longâ€Term Superâ€Resolution Bioimaging. Advanced Materials, 2017, 29, 1703643.	21.0	140
4	Aggregationâ€Induced Nonlinear Optical Effects of AIEgen Nanocrystals for Ultradeep In Vivo Bioimaging. Advanced Materials, 2019, 31, e1904799.	21.0	126
5	Tunable Aggregation-Induced Emission Nanoparticles by Varying Isolation Groups in Perylene Diimide Derivatives and Application in Three-Photon Fluorescence Bioimaging. ACS Nano, 2018, 12, 9532-9540.	14.6	106
6	Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging. ACS Nano, 2016, 10, 588-597.	14.6	97
7	Aggregation-induced emission nanoparticles as photosensitizer for two-photon photodynamic therapy. Materials Chemistry Frontiers, 2017, 1, 1746-1753.	5.9	82
8	Physical and chemical mechanisms of tissue optical clearing. IScience, 2021, 24, 102178.	4.1	63
9	Tetraphenylethene end-capped diketopyrrolopyrrole fluorogens with AIE and large two-photon absorption cross-sections features and application in bioimaging. Dyes and Pigments, 2016, 133, 201-213.	3.7	33
10	Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells. Nano Research, 2018, 11, 6023-6033.	10.4	33
11	JNK activation-mediated nuclear SIRT1 protein suppression contributes to silica nanoparticle-induced pulmonary damage via p53 acetylation and cytoplasmic localisation. Toxicology, 2019, 423, 42-53.	4.2	27
12	Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration. Light: Science and Applications, 2021, 10, 241.	16.6	27
13	Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish. Nano Research, 2016, 9, 1921-1933.	10.4	26
14	Utilizing a Pyrazineâ€Containing Aggregationâ€Induced Emission Luminogen as an Efficient Photosensitizer for Imagingâ€Guided Twoâ€Photon Photodynamic Therapy. Chemistry - A European Journal, 2018, 24, 16603-16608.	3.3	23
15	Efficient red luminogen with aggregation-induced emission for <i>in vivo</i> three-photon brain vascular imaging. Materials Chemistry Frontiers, 2020, 4, 1634-1642.	5.9	22
16	Aggregation-induced emission nanoprobe assisted ultra-deep through-skull three-photon mouse brain imaging. Nano Today, 2022, 45, 101536.	11.9	22
17	Short-wave infrared emitted/excited fluorescence from carbon dots and preliminary applications in bioimaging. Materials Chemistry Frontiers, 2018, 2, 1343-1350.	5.9	20
18	AIE-nanoparticle assisted ultra-deep three-photon microscopy in the <i>in vivo</i> mouse brain under 1300 nm excitation. Materials Chemistry Frontiers, 2021, 5, 3201-3208.	5.9	18

Dong-Yu Li

#	Article	IF	CITATIONS
19	<scp>Visibleâ€</scp> near infrared <scp>â€l</scp> skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. Journal of Biophotonics, 2020, 13, e202000142.	2.3	17
20	Synthesis, two-photon absorption and aggregation-induced emission properties of multi-branched triphenylamine derivatives based on diketopyrrolopyrrole for bioimaging. RSC Advances, 2016, 6, 58434-58442.	3.6	16
21	Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging. Journal of Innovative Optical Health Sciences, 2019, 12, 1940005.	1.0	13
22	Graphene oxide nanoparticles for two-photon fluorescence imaging of zebrafish. Optical and Quantum Electronics, 2016, 48, 1.	3.3	10
23	Tissue optical clearing for 3D visualization of vascular networks: A review. Vascular Pharmacology, 2021, 141, 106905.	2.1	10
24	Photosensitizer doped colloidal mesoporous silica nanoparticles for three-photon photodynamic therapy. Optical and Quantum Electronics, 2015, 47, 3081-3090.	3.3	7
25	Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. Journal of Innovative Optical Health Sciences, 2022, 15, .	1.0	6
26	In vivo tissue optical clearing assisted through-skull targeted photothrombotic ischemic stroke model in mice. Journal of Biomedical Optics, 2022, 27, .	2.6	5
27	Broadband Wavelength Conversion Based on Parallel-Coupled Micro-Ring Resonators. IEEE Photonics Technology Letters, 2018, 30, 1559-1562.	2.5	4
28	Optical clearing imaging assisted evaluation of urokinase thrombolytic therapy on cerebral vessels with different sizes. Biomedical Optics Express, 2022, 13, 3243.	2.9	3
29	The decreased permittivity of zebrafish embryos culture medium by magnetic fields did not affect early development of zebrafish embryos. Ecotoxicology and Environmental Safety, 2020, 193, 110350.	6.0	1
30	Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. Advances in Experimental Medicine and Biology, 2021, 3233, 217-255.	1.6	0