Eugene Kuatsjah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603353/publications.pdf

Version: 2024-02-01

1040056 996975 16 443 9 15 citations h-index g-index papers 16 16 16 542 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metabolic Engineering, 2022, 70, 31-42.	7.0	25
2	Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nature Catalysis, 2022, 5, 86-98.	34.4	51
3	Discovery, characterization, and metabolic engineering of Rieske non-heme iron monooxygenases for guaiacol O-demethylation. Chem Catalysis, 2022, 2, 1989-2011.	6.1	8
4	Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2021, 296, 100758.	3.4	7
5	Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metabolic Engineering, 2021, 65, 111-122.	7.0	48
6	A shared mechanistic pathway for pyridoxal phosphate–dependent arginine oxidases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
7	Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. Journal of Biological Chemistry, 2021, 297, 101416.	3.4	17
8	Serine and Metal-Dependent meta-Cleavage Product Hydrolases. , 2020, , 346-372.		0
9	Identification of functionally important residues and structural features in a bacterial lignostilbene dioxygenase. Journal of Biological Chemistry, 2019, 294, 12911-12920.	3.4	10
10	Snapshots of the Catalytic Cycle of an O ₂ , Pyridoxal Phosphate-Dependent Hydroxylase. ACS Chemical Biology, 2018, 13, 965-974.	3.4	12
11	Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catalysis, 2018, 8, 11622-11632.	11.2	6
12	Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. ChemBioChem, 2018, 19, 1771-1778.	2.6	5
13	Characterization of an extradiol dioxygenase involved in the catabolism of ligninâ€derived biphenyl. FEBS Letters, 2017, 591, 1001-1009.	2.8	20
14	The bacterial meta-cleavage hydrolase LigY belongs to the amidohydrolase superfamily, not to the $\hat{l}\pm/\hat{l}^2$ -hydrolase superfamily. Journal of Biological Chemistry, 2017, 292, 18290-18302.	3.4	11
15	A pyridoxal phosphate–dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nature Chemical Biology, 2016, 12, 194-199.	8.0	37
16	Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common. Environmental Science & Environmental Science & 2013, 47, 10708-10717.	10.0	179