Gloria Tardajos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603209/publications.pdf

Version: 2024-02-01

218381 189595 2,889 82 26 citations h-index papers

g-index 83 83 83 3077 docs citations times ranked citing authors all docs

50

#	Article	IF	Citations
1	Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes. Nanomaterials, 2018, 8, 168.	1.9	7
2	Mechanosensitive Gold Colloidal Membranes Mediated by Supramolecular Interfacial Self-Assembly. Journal of the American Chemical Society, 2017, 139, 1120-1128.	6.6	24
3	Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science, 2017, 358, 640-644.	6.0	233
4	Thiolâ€Functionalized IGEPAL® Surfactants as Novel Fluorescent Ligands for the Silica Coating of Gold Nanoparticles. Israel Journal of Chemistry, 2016, 56, 249-256.	1.0	2
5	Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy. ACS Omega, 2016, 1, 388-395.	1.6	21
6	Ïf-HoleâçÏ€ and lone pairâçÏ€ interactions in benzylic halides. Organic and Biomolecular Chemistry, 2015, 13, 6194-6202.	1.5	17
7	Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 2015, 15, 8282-8288.	4.5	105
8	Using Inclusion Complexes with Cyclodextrins To Explore the Aggregation Behavior of a Ruthenium Metallosurfactant. Langmuir, 2015, 31, 2677-2688.	1.6	19
9	Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles. ACS Nano, 2015, 9, 11241-11248.	7.3	9
10	Activated nanoporous carbon–gold nanoparticle composite electrode with enhanced volumetric capacitance. RSC Advances, 2015, 5, 86282-86290.	1.7	5
11	Polyrotaxaneâ€Mediated Selfâ€Assembly of Gold Nanospheres into Fully Reversible Supercrystals. Angewandte Chemie - International Edition, 2014, 53, 12751-12755.	7.2	36
12	The role of the surrounding polarity on the phototautomerization process in a diazaaromatic compound: An UV–vis and NMR study. Journal of Luminescence, 2014, 148, 64-71.	1.5	4
13	Polyrotaxaneâ€Mediated Selfâ€Assembly of Gold Nanospheres into Fully Reversible Supercrystals. Angewandte Chemie, 2014, 126, 12965-12969.	1.6	9
14	The Impact of Dihydrogen Phosphate Anions on the Excited-State Proton Transfer of Harmane. Effect of Î ² -Cyclodextrin on These Photoreactions. Journal of Physical Chemistry A, 2012, 116, 207-214.	1.1	16
15	Rhodamine solid complexes as fluorescence probes to monitor the dispersion of cyclodextrins in polymeric nanocomposites. Dyes and Pigments, 2012, 94, 427-436.	2.0	17
16	Determination of the ionization constants of natural cyclodextrins by high-resolution 1H-NMR and photon correlation spectroscopy. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 361-367.	1.6	7
17	Chemiluminescence of phthalhydrazide derivatives in organized media: Interactions with surfactants and cyclodextrins. Journal of Luminescence, 2011, 131, 662-668.	1.5	6
18	Relationships observed in the structure and spectra of uracil and its 5-substituted derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1261-1269.	2.0	38

#	Article	IF	Citations
19	FT-IR and FT-Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometry, atomic charges and some molecular properties of the biomolecule 5-iodouracil. Computational and Theoretical Chemistry, 2010, 940, 29-44.	1.5	21
20	Simulation of a tetramer form of 5-iodouracil: The vibrational spectra and molecular structure in the isolated and in the solid state by using DFT calculations. Vibrational Spectroscopy, 2010, 52, 108-121.	1.2	15
21	Raman and Infrared Spectra of Hydrated 2,4-Dithiouracil Molecule. , 2010, , .		2
22	Raman And Infrared Spectra Of Hydrated 5-Nitrouracil Molecule. , 2010, , .		1
23	Solid Crystal Network of Self-Assembled Cyclodextrin and Nonionic Surfactant Pseudorotaxanes. Journal of Physical Chemistry B, 2010, 114, 11489-11495.	1.2	15
24	Natural Cyclodextrins as Efficient Boosters of the Chemiluminescence of Luminol and Isoluminol: Exploration of Potential Applications. Journal of Physical Chemistry B, 2010, 114, 2798-2806.	1.2	38
25	Quantum Chemical Scaling and Its Importance: The Infrared and Raman Spectra of 5-Bromouracil. Spectroscopy Letters, 2010, 43, 51-59.	0.5	20
26	Enhancement of the Chemiluminescence of Two Isoluminol Derivatives by Nanoencapsulation with Natural Cyclodextrins. Journal of Physical Chemistry B, 2010, 114, 10541-10549.	1.2	14
27	Geminiâ€Surfactantâ€Directed Selfâ€Assembly of Monodisperse Gold Nanorods into Standing Superlattices. Angewandte Chemie - International Edition, 2009, 48, 9484-9488.	7.2	210
28	Complexation and Chiral Drug Recognition of an Amphiphilic Phenothiazine Derivative with βâ€Cyclodextrin. Journal of Pharmaceutical Sciences, 2008, 97, 1484-1498.	1.6	21
29	On the Connection between the Complexation and Aggregation Thermodynamics of Oxyethylene Nonionic Surfactants. Journal of Physical Chemistry B, 2008, 112, 15691-15700.	1.2	12
30	Study of the Interaction between a Nonyl Phenyl Ether and \hat{I}^2 -Cyclodextrin: \hat{A} Declouding Nonionic Surfactant Solutions by Complexation. Journal of Physical Chemistry B, 2007, 111, 1368-1376.	1.2	26
31	Studying the transfer process of a gemini surfactant from water to \hat{l}^2 -cyclodextrin at a molecular level. Chemical Physics Letters, 2007, 446, 92-97.	1.2	13
32	Effect of \hat{I}^2 -cyclodextrin on the aggregation of the non-ionic surfactant Igepal CO-630 in water as studied by 1D and 2D NMR spectroscopy. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 251-256.	1.6	5
33	FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chemical Physics, 2007, 340, 17-31.	0.9	98
34	Inclusion Complexes between Î ² -Cyclodextrin and a Gemini Surfactant in Aqueous Solution:Â An NMR Study. Journal of Physical Chemistry B, 2006, 110, 13819-13828.	1.2	69
35	Unexpected binding mode of gemini surfactants and \hat{I}^3 -cyclodextrin: DOSY as a tool for the study of complexation. Chemical Physics Letters, 2006, 432, 486-490.	1.2	19
36	Selective Solvation of Cyclodextrins by Small Molecules: A NOE Study. ChemPhysChem, 2006, 7, 2074-2076.	1.0	13

#	Article	IF	Citations
37	Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry. Journal of Chemical Education, 2004, 81, 270.	1.1	21
38	Site-Specific Interaction between 2-Dibenzofuran Carboxylate and \hat{I}^2 - and \hat{I}^3 -Cyclodextrins Determined by Intermolecular NOE and Molecular Modeling. Journal of Physical Chemistry B, 2004, 108, 14154-14162.	1.2	28
39	Effects of Natural Cyclodextrins on the Photophysical Properties of Dibenzofuran-2-carboxylic Acid. Journal of Physical Chemistry A, 2004, 108, 392-402.	1.1	28
40	Spectroscopic Characterization of the System \hat{l}^2 -Cyclodextrin + Propafenone Hydrochloride + Water. Journal of Physical Chemistry B, 2002, 106, 6096-6103.	1.2	7
41	Study of phenothiazine and N-methyl phenothiazine by infrared, raman, 1H-, and 13C-NMR spectroscopies. International Journal of Quantum Chemistry, 2002, 89, 147-171.	1.0	27
42	The Aggregation of Cyclodextrins as Studied by Photon Correlation Spectroscopy. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 101-105.	1.6	197
43	Thermodynamic and Spectroscopic Study of a Molecular Rotaxane Containing a Bolaform Surfactant and β-Cyclodextrin. Langmuir, 2001, 17, 1392-1398.	1.6	41
44	Ultrasonic Study of the L Phase of the CTAB/Benzyl Alcohol/Water System. Journal of Colloid and Interface Science, 1999, 211, 104-109.	5.0	10
45	Molar Partial Compressibilities and Volumes,1H NMR, and Molecular Modeling Studies of the Ternary Systems Î ² -Cyclodextrin + Sodium Octanoate/Sodium Decanoate + Water. Langmuir, 1999, 15, 7963-7972.	1.6	26
46	Speed of Sound, Density, and Molecular Modeling Studies on the Inclusion Complex between Sodium Cholate and \hat{l}^2 -Cyclodextrin. Langmuir, 1997, 13, 2235-2241.	1.6	55
47	Study at a Molecular Level of the Transfer Process of a Cationic Surfactant from Water to β-Cyclodextrin. Journal of Physical Chemistry B, 1997, 101, 4413-4421.	1.2	48
48	Inclusion Complexes between Cyclodextrins and Triblock Copolymers in Aqueous Solution:  A Dynamic and Static Light-Scattering Study. Journal of Physical Chemistry B, 1997, 101, 710-719.	1.2	84
49	Polarization of the Cal* chemiluminescence from the Ca*+ CH3I â†' Cal*+ CH3reaction: evidence for Hund's case (c)coupling. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3671-3672.	1.7	3
50	Excess Molar Volumes of Binary Mixtures Containing a Methyl Ester (Ethanoate to Tetradecanoate) with Odd n-Alkanes at 298.15 K. Journal of Chemical & Engineering Data, 1995, 40, 283-289.	1.0	35
51	Accurate, sensitive, and fully automatic method to measure sound velocity and attenuation. Review of Scientific Instruments, 1994, 65, 2933-2938.	0.6	30
52	Isothermal compressibility and isobaric thermal expansivity of linear and branched hexanols at 298.15 K. Journal of Chemical & Engineering Data, 1994, 39, 349-350.	1.0	19
53	Thermodynamic mixing properties of (chlorobenzene+an alkane). Journal of Chemical Thermodynamics, 1993, 25, 201-207.	1.0	8
54	Thermodynamic properties of (a methyl ester + an n-alkane). II. HEm and VEm for {xCH3(CH2)u-1CO2CH3 (u = 1 to 6) + (1-x)CH3(CH2)4CH3}. Journal of Chemical Thermodynamics, 1993, 25, 561-568.	1.0	24

#	Article	IF	Citations
55	Study of the 2,6-o-Dimethyl-β-cyclodextrin + Hexadecyltrimethylammonium Bromide + Water System from Speed of Sound Measurements. Journal of Colloid and Interface Science, 1993, 158, 388-394.	5.0	21
56	Van der Waals liquids, Flory theory and mixing functions for chlorobenzene with linear and branched alkanes. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 89-93.	1.7	17
57	Thermodynamic properties for binary liquid mixtures of 1-chlorobutane+n-alkanes. Journal of Solution Chemistry, 1991, 20, 805-816.	0.6	31
58	Analysis of volumes of mixing for propyl and butyl formate withn-alkanes in terms of the Nitta model. Journal of Solution Chemistry, 1990, 19, 1063-1071.	0.6	4
59	First and second thermodynamic mixing properties of ethylbenzene +n-alkanes: Experimental and theory. Journal of Solution Chemistry, 1990, 19, 1137-1151.	0.6	4
60	Ultrasonic speeds and isentropic compressibilities of (1,4-dioxane + n-heptane or n-decane or) Tj ETQq0 0 0 rgBT	/Qverlock	19 ₉ Tf 50 542
61	High-frequency ultrasonic studies of solutions of styrene-butadiene-styrene triblock copolymers. Polymer, 1989, 30, 1484-1487.	1.8	2
62	Speed of sound and isentropic compressibility of (1-chlorobutane + n-undecane or n-dodecane or) Tj ETQq0 0 0 r	gBT/Overlo	ock 10 Tf 50
63	Isobaric thermal expansion and isothermal compressibility of ethylbenzene + n-hexane, and + n-octane at 25 and 45�C. Journal of Solution Chemistry, 1989, 18, 143-150.	0.6	18
64	The effect of pressure on order destruction and order creation in linear or branched alkane mixtures. Journal of Solution Chemistry, 1989, 18, 369-377.	0.6	14
65	First and second thermodynamic mixing functions of ethylbenzene+n-nonane, +n-decane, and+n-dodecane at 25 and 45�C. Journal of Solution Chemistry, 1989, 18, 893-901.	0.6	6
66			

#	Article	IF	CITATIONS
73	Thermodynamics of methylcyclohexane + toluene and methylcyclohexane + cyclohexane mixtures from isothermal compressibility data. Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 437-446.	1.1	12
74	Correlation of the prigogine-flory theory with isothermal compressibility data. I. Systems with quasi-spherical molecules. Journal of Solution Chemistry, 1983, 12, 41-51.	0.6	19
75	Isothermal compressibility of toluene + n-hexane and + n-octane at 298.15, 308.15, 318.15, and 333.15 K. Journal of Chemical Thermodynamics, 1982, 14, 671-677.	1.0	27
76	Compressibilities of cyclohexane and toluene mixtures at various temperatures. Journal of Solution Chemistry, 1982, 11, 557-564.	0.6	15
77	Isothermal compressibility of cyclohexane + n-tridecane and + n-pentadecane at 298.15, 308.15, 318.15, and 333.15 K. Journal of Chemical Thermodynamics, 1981, 13, 783-788.	1.0	19
78	Isothermal compressibility of benzene + n-undecane, + n-dodecane, + n-tetradecane, and + n-hexadecane. Journal of Chemical Thermodynamics, 1979, 11, 951-957.	1.0	19
79	Excess enthalpies at 298.15 K for binary mixtures of toluene + an n-alkane. Journal of Chemical Thermodynamics, 1979, 11, 825-828.	1.0	16
80	Isothermal compressibilities of n-1-alcohols from methanol to 1-dodecanol at 298.15, 308.15, 318.15, and 333.15 K. Journal of Chemical Thermodynamics, 1979, 11, 441-445.	1.0	191
81	Excess enthalpies at 298.15 K of binary mixtures of cyclohexane with n-alkanes. Journal of Chemical Thermodynamics, 1979, 11, 159-166.	1.0	31
82	Isothermal compressibilities of n-alkanes and benzene. Journal of Chemical Thermodynamics, 1978, 10, 19-24.	1.0	142