Véronique Sgambato-Faure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603184/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Up and Down Î ³ -Synuclein Transcription in Dopamine Neurons Translates into Changes in Dopamine Neurotransmission and Behavioral Performance in Mice. International Journal of Molecular Sciences, 2022, 23, 1807.	1.8	7
2	A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. Journal of Clinical Investigation, 2022, 132, .	3.9	12
3	Breathing new life into neurotoxic-based monkey models of Parkinson's disease to study the complex biological interplay between serotonin and dopamine. Progress in Brain Research, 2021, 261, 265-285.	0.9	3
4	Selective serotonin reuptake inhibitor treatment retunes emotional valence in primate ventral striatum. Neuropsychopharmacology, 2021, 46, 2073-2082.	2.8	6
5	Serotonergic and Dopaminergic Lesions Underlying Parkinsonian Neuropsychiatric Signs. Movement Disorders, 2021, 36, 2888-2900.	2.2	37
6	Toxin-Based Rodent Models of Parkinson's. Neuromethods, 2021, , 3-19.	0.2	0
7	Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiology of Disease, 2020, 134, 104643.	2.1	7
8	Blood Flow as a Route for Bidirectional Propagation of Synucleinopathy in Parkinson's Disease?. Movement Disorders, 2020, 35, 1751-1751.	2.2	0
9	Editorial: Non-Dopaminergic Systems in Parkinson's Disease. Frontiers in Pharmacology, 2020, 11, 593822.	1.6	15
10	Neuropsychiatric Disorders in Parkinson's Disease: What Do We Know About the Role of Dopaminergic and Non-dopaminergic Systems?. Frontiers in Neuroscience, 2020, 14, 25.	1.4	30
11	Early limbic microstructural alterations in apathy and depression in de novo Parkinson's disease. Movement Disorders, 2019, 34, 1644-1654.	2.2	52
12	Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. Journal of Neural Transmission, 2018, 125, 1145-1156.	1.4	11
13	Historical crossroads in the conceptual delineation of apathy in Parkinson's disease. Brain, 2018, 141, 613-619.	3.7	8
14	Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. Journal of Neural Transmission, 2018, 125, 485-500.	1.4	15
15	Diffusion tensor imaging marks dopaminergic and serotonergic lesions in the Parkinsonian monkey. Movement Disorders, 2018, 33, 298-309.	2.2	9
16	Molecular Imaging of Opioid System in Idiopathic Parkinson's Disease. International Review of Neurobiology, 2018, 141, 275-303.	0.9	12
17	Pathophysiology of levodopa-induced dyskinesia: Insights from multimodal imaging and immunohistochemistry in non-human primates. NeuroImage, 2018, 183, 132-141.	2.1	17
18	Ventral Pallidum Encodes Contextual Information and Controls Aversive Behaviors. Cerebral Cortex, 2017, 27, bhw107.	1.6	53

#	Article	IF	CITATIONS
19	Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurology, The, 2017, 16, 238-250.	4.9	280
20	Serotonergic Approaches in Parkinson's Disease: Translational Perspectives, an Update. ACS Chemical Neuroscience, 2017, 8, 973-986.	1.7	37
21	Imaging the Etiology of Apathy, Anxiety, and Depression in Parkinson's Disease: Implication for Treatment. Current Neurology and Neuroscience Reports, 2017, 17, 76.	2.0	79
22	Control of the direct pathway by cholinergic interneurons is involved in parkinsonian motor symptoms. Movement Disorders, 2017, 32, 393-393.	2.2	0
23	Characterization and Reliability of [18F]2FNQ1P in Cynomolgus Monkeys as a PET Radiotracer for Serotonin 5-HT6 Receptors. Frontiers in Pharmacology, 2017, 8, 471.	1.6	10
24	The prominent role of serotonergic degeneration in apathy, anxiety and depression in <i>de novo</i> Parkinson's disease. Brain, 2016, 139, 2486-2502.	3.7	188
25	Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates. Brain Structure and Function, 2016, 221, 345-364.	1.2	27
26	Imaging Dopamine and Serotonin Systems on MPTP Monkeys: A Longitudinal PET Investigation of Compensatory Mechanisms. Journal of Neuroscience, 2016, 36, 1577-1589.	1.7	42
27	Social behavioral changes in MPTP-treated monkey model of Parkinson's disease. Frontiers in Behavioral Neuroscience, 2015, 9, 42.	1.0	17
28	Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 495-502.	3.3	17
29	Behavioural impact of a double dopaminergic and serotonergic lesion in the non-human primate. Brain, 2015, 138, 2632-2647.	3.7	54
30	Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Movement Disorders, 2015, 30, 1155-1170.	2.2	168
31	Serotonergic pharmacology in animal models: From behavioral disorders to dyskinesia. Neuropharmacology, 2014, 81, 15-30.	2.0	33
32	A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction. NeuroImage, 2013, 77, 26-43.	2.1	45
33	Towards a primate model of Gilles de la Tourette syndrome: Anatomo-behavioural correlation of disorders induced by striatal dysfunction. Cortex, 2013, 49, 1126-1140.	1.1	77
34	Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson's disease. Neurobiology of Disease, 2012, 48, 379-390.	2.1	15
35	Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson's disease. Progress in Neurobiology, 2012, 96, 69-86.	2.8	160
36	Effects of dopamine and serotonin antagonist injections into the striatopallidal complex of asymptomatic MPTP-treated monkeys. Neurobiology of Disease, 2012, 48, 27-39.	2.1	26

VéRONIQUE SGAMBATO-FAURE

#	Article	IF	CITATIONS
37	Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Movement Disorders, 2012, 27, 84-89.	2.2	112
38	Forelimb dyskinesia mediated by highâ€frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptors. European Journal of Neuroscience, 2010, 32, 423-434.	1.2	16
39	Distinct Changes in cAMP and Extracellular Signal-Regulated Protein Kinase Signalling in L-DOPA-Induced Dyskinesia. PLoS ONE, 2010, 5, e12322.	1.1	111
40	Primate brain template image and reference atlas creation for voxel-based functional analysis of PET in Macaca fascicularis. NeuroImage, 2010, 52, S174-S175.	2.1	0
41	De novo and long-term l-Dopa induce both common and distinct striatal gene profiles in the hemiparkinsonian rat. Neurobiology of Disease, 2009, 34, 340-350.	2.1	25
42	High-Frequency Stimulation of the Subthalamic Nucleus Potentiates L-DOPA-Induced Neurochemical Changes in the Striatum in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2007, 27, 2377-2386.	1.7	66
43	The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochemical and Biophysical Research Communications, 2006, 343, 630-637.	1.0	57
44	Subthalamic Stimulation-Induced Forelimb Dyskinesias Are Linked to an Increase in Glutamate Levels in the Substantia Nigra Pars Reticulata. Journal of Neuroscience, 2006, 26, 10768-10776.	1.7	96
45	Phosphorylation of DARPP-32 at Threonine-34 is Required for Cocaine Action. Neuropsychopharmacology, 2006, 31, 555-562.	2.8	90
46	Coordinated and Spatial Upregulation of Arc in Striatonigral Neurons Correlates With L-Dopa-Induced Behavioral Sensitization in Dyskinetic Rats. Journal of Neuropathology and Experimental Neurology, 2005, 64, 936-947.	0.9	85
47	Regulation of ania-6 splice variants by distinct signaling pathways in striatal neurons. Journal of Neurochemistry, 2004, 86, 153-164.	2.1	27
48	Dopamine and Glutamate Induce Distinct Striatal Splice Forms of Ania-6, an RNA Polymerase II-Associated Cyclin. Neuron, 2001, 32, 277-287.	3.8	91
49	Effect of a functional impairment of corticostriatal transmission on cortically evoked expression of c-fos and zif 268 in the rat basal ganglia. Neuroscience, 1999, 93, 1313-1321.	1.1	16
50	Extracellular Signal-Regulated Kinase (ERK) Controls Immediate Early Gene Induction on Corticostriatal Stimulation. Journal of Neuroscience, 1998, 18, 8814-8825.	1.7	308
51	In VivoExpression and Regulation of Elk-1, a Target of the Extracellular-Regulated Kinase Signaling Pathway, in the Adult Rat Brain. Journal of Neuroscience, 1998, 18, 214-226.	1.7	151
52	EFFECT OF ANGIOTENSIN II ON A SPINAL NOCICEPTIVE REFLEX IN THE RAT: RECEPTOR AND MECHANISM OF ACTION. Life Sciences, 1997, 61, 503-513.	2.0	18
53	Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia. Neuroscience, 1997, 81, 93-112.	1.1	100