Katherine A Gallagher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602622/publications.pdf

Version: 2024-02-01

60 papers

3,974 citations

147566 31 h-index 56 g-index

61 all docs

61 docs citations

61 times ranked

6005 citing authors

#	Article	IF	CITATIONS
1	Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 \hat{l}_{\pm} . Journal of Clinical Investigation, 2007, 117, 1249-1259.	3.9	595
2	Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 2014, 20, 368-375.	7.2	415
3	Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. Journal of Immunology, 2017, 199, 17-24.	0.4	325
4	Inflammation as a Therapeutic Target for Diabetic Neuropathies. Current Diabetes Reports, 2016, 16, 29.	1.7	167
5	Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Current Diabetes Reports, 2018, 18, 2.	1.7	166
6	Epigenetic Changes in Bone Marrow Progenitor Cells Influence the Inflammatory Phenotype and Alter Wound Healing in Type 2 Diabetes. Diabetes, 2015, 64, 1420-1430.	0.3	159
7	Cytokine Induced Phenotypic and Epigenetic Signatures Are Key to Establishing Specific Macrophage Phenotypes. PLoS ONE, 2013, 8, e78045.	1.1	147
8	Ly6C ^{Hi} Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1102-1114.	1.1	128
9	Targeting epigenetic mechanisms in diabetic wound healing. Translational Research, 2019, 204, 39-50.	2.2	127
10	Regulation of heterotopic ossification byÂmonocytes in a mouse model of aberrant wound healing. Nature Communications, 2020, 11, 722.	5.8	104
11	Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 623-634.	1.1	87
12	The Histone Methyltransferase Setdb2 Modulates Macrophage Phenotype and Uric Acid Production in Diabetic Wound Repair. Immunity, 2019, 51, 258-271.e5.	6.6	85
13	Dimethyl Itaconate Is Not Metabolized into Itaconate Intracellularly. Journal of Biological Chemistry, 2017, 292, 4766-4769.	1.6	80
14	IFN- \hat{l}^3 and TNF- $\hat{l}\pm$ synergism may provide a link between psoriasis and inflammatory atherogenesis. Scientific Reports, 2017, 7, 13831.	1.6	78
15	Impact of Sex on Morbidity and Mortality Rates After Lower Extremity Interventions for Peripheral Arterial Disease. Journal of the American College of Cardiology, 2014, 63, 2525-2530.	1.2	75
16	Hyperbaric Oxygen and Bone Marrow–Derived Endothelial Progenitor Cells in Diabetic Wound Healing. Vascular, 2006, 14, 328-337.	0.4	71
17	Endovascular Management as First Therapy for Chronic Total Occlusion of the Lower Extremity Arteries: Comparison of Balloon Angioplasty, Stenting, and Directional Atherectomy . Journal of Endovascular Therapy, 2011, 18, 624-637.	0.8	68
18	The Histone Methyltransferase MLL1 Directs Macrophage-Mediated Inflammation in Wound Healing and Is Altered in a Murine Model of Obesity and Type 2 Diabetes. Diabetes, 2017, 66, 2459-2471.	0.3	64

#	Article	IF	Citations
19	Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing. Frontiers in Immunology, 2017, 8, 635.	2.2	63
20	Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. Journal of Experimental Medicine, 2021, 218, .	4.2	63
21	Enhancement of macrophage inflammatory responses by CCL2 is correlated with increased miR-9 expression and downregulation of the ERK1/2 phosphatase Dusp6. Cellular Immunology, 2017, 314, 63-72.	1.4	62
22	Midterm Outcomes After Treatment of Type II Endoleaks Associated With Aneurysm Sac Expansion. Journal of Endovascular Therapy, 2012, 19, 182-192.	0.8	59
23	Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. European Journal of Immunology, 2018, 48, 1445-1455.	1.6	59
24	Macrophage-mediated inflammation in diabetic wound repair. Seminars in Cell and Developmental Biology, 2021, 119, 111-118.	2.3	50
25	SIRT3 Regulates Macrophage-Mediated Inflammation in Diabetic Wound Repair. Journal of Investigative Dermatology, 2019, 139, 2528-2537.e2.	0.3	46
26	Sepsis Induces Prolonged Epigenetic Modifications in Bone Marrow and Peripheral Macrophages Impairing Inflammation and Wound Healing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2353-2366.	1.1	46
27	Predictors of compliance with surveillance after endovascular aneurysm repair and comparative survival outcomes. Journal of Vascular Surgery, 2015, 62, 27-35.	0.6	40
28	Gender Differences in Outcomes of Endovascular Treatment of Infrainguinal Peripheral Artery Disease. Vascular and Endovascular Surgery, 2011, 45, 703-711.	0.3	38
29	Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight, 2020, 5, .	2.3	37
30	Early Outcomes following Endovascular, Open Surgical, and Hybrid Revascularization for Lower Extremity Acute Limb Ischemia. Annals of Vascular Surgery, 2018, 51, 106-112.	0.4	36
31	The STAT4/MLL1 Epigenetic Axis Regulates the Antimicrobial Functions of Murine Macrophages. Journal of Immunology, 2017, 199, 1865-1874.	0.4	34
32	Contemporary outcomes with percutaneous vascular interventions for peripheral critical limb ischemia in those with and without poly-vascular disease. Vascular Medicine, 2014, 19, 491-499.	0.8	33
33	Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Research, 2021, 31, 2258-2275.	2.4	31
34	Palmitateâ€TLR4 signaling regulates the histone demethylase, JMJD3, in macrophages and impairs diabetic wound healing. European Journal of Immunology, 2020, 50, 1929-1940.	1.6	29
35	Histone Methylation Directs Myeloid TLR4 Expression and Regulates Wound Healing following Cutaneous Tissue Injury. Journal of Immunology, 2019, 202, 1777-1785.	0.4	28
36	Natural History of latrogenic Pediatric Femoral Artery Injury. Annals of Vascular Surgery, 2017, 42, 205-213.	0.4	26

#	Article	IF	CITATIONS
37	Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	26
38	TNF- $\hat{l}\pm$ regulates diabetic macrophage function through the histone acetyltransferase MOF. JCI Insight, 2020, 5, .	2.3	25
39	Ly6CLo Monocyte/Macrophages are Essential for Thrombus Resolution in a Murine Model of Venous Thrombosis. Thrombosis and Haemostasis, 2020, 120, 289-299.	1.8	22
40	Women undergoing aortic surgery are at higher risk for unplanned readmissions compared with men especially when discharged home. Journal of Vascular Surgery, 2016, 63, 1496-1504.e1.	0.6	21
41	Chorioamnionitis exposure remodels the unique histone modification landscape of neonatal monocytes and alters the expression of immune pathway genes. FEBS Journal, 2019, 286, 82-109.	2.2	20
42	Epigenetic Regulation of TLR4 in Diabetic Macrophages Modulates Immunometabolism and Wound Repair. Journal of Immunology, 2020, 204, 2503-2513.	0.4	19
43	Time Heals All Wounds … But Wounds Heal Faster with Lactobacillus. Cell Host and Microbe, 2018, 23, 432-434.	5.1	18
44	Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging <i>In Vivo, Ex Vivo</i> , and <i>In Situ</i> . ACS Nano, 2022, 16, 1999-2012.	7.3	17
45	Alterations in macrophage phenotypes in experimental venous thrombosis. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2016, 4, 463-471.	0.9	12
46	Intravascular ultrasound as a novel tool for the diagnosis and targeted treatment of functional popliteal artery entrapment syndrome. Journal of Vascular Surgery Cases and Innovative Techniques, 2017, 3, 74-78.	0.3	9
47	Accessing the academic influence of vascular surgeons within the National Institutes of Health iCite database. Journal of Vascular Surgery, 2020, 71, 1741-1748.e2.	0.6	9
48	Bleeding and thrombotic outcomes associated with postoperative use of direct oral anticoagulants after open peripheral artery bypass procedures. Journal of Vascular Surgery, 2020, 72, 1996-2005.e4.	0.6	9
49	The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules, 2022, 12, 172.	1.8	8
50	Variation in Hospital Door-to-Intervention Time for Ruptured AAAs and Its Association with Outcomes. Annals of Vascular Surgery, 2020, 62, 83-91.	0.4	7
51	A 22-year analysis of the Society for Vascular Surgery Foundation Mentored Research Career Development Award in fostering vascular surgeon-scientists. Journal of Vascular Surgery, 2022, 75, 398-406.e3.	0.6	7
52	IFN- \hat{I}^{ϱ} is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight, 2022, 7, .	2.3	5
53	Intravascular ultrasound imaging as a novel tool for the diagnosis of endofibrosis. Journal of Vascular Surgery Cases and Innovative Techniques, 2016, 2, 59-61.	0.3	4
54	PC222. Altered Histone Methylation at the IL-1B Promoter in Diabetic Macrophages Enhances Inflammation and Impairs Wound Healing. Journal of Vascular Surgery, 2015, 61, 176S.	0.6	3

#	Article	IF	CITATIONS
55	Loss of a Mitochondrial Sirtuin Protein, SIRT3, Alters the Inflammatory Phase of Wound Healing. Journal of the American College of Surgeons, 2016, 223, S167.	0.2	2
56	Aggressive Phenotype of Intravascular Lymphoma Relative to Other Malignant Intraabdominal Tumors Requiring Vascular Reconstruction. Annals of Vascular Surgery, 2019, 54, 72-83.	0.4	1
57	Dysregulated inflammation in diabetic wounds. , 2020, , 81-95.		1
58	Differences in <scp>H3K4me3</scp> and chromatin accessibility contribute to altered Tâ€cell receptor signaling in neonatal naÃve <scp>CD4</scp> T cells. Immunology and Cell Biology, 2022, 100, 562-579.	1.0	1
59	Abstract 190: Epigenetic Modifications of Pro-inflammatory Gene Expression in Macrophages by a Demethylase Enzyme, JMJD3, May Promote Chronic Inflammation in Type 2 Diabetic (T2D) Wounds. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	O
60	Abstract 144: Bone-Marrow Chimeras Demonstrate that the Epigenetic Signature in the Bone Marrow Myeloid Cells Influences the Peripheral Wound M1-Dominant Macrophage Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0