List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602587/publications.pdf Version: 2024-02-01



LEI ZHANC

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Space-time-coding digital metasurfaces. Nature Communications, 2018, 9, 4334.                                                                                                                         | 12.8 | 728       |
| 2  | A Reconfigurable Active Huygens' Metalens. Advanced Materials, 2017, 29, 1606422.                                                                                                                     | 21.0 | 470       |
| 3  | Ultrathin Pancharatnam–Berry Metasurface with Maximal Crossâ€Polarization Efficiency. Advanced<br>Materials, 2015, 27, 1195-1200.                                                                     | 21.0 | 431       |
| 4  | Visibleâ€Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Advanced Materials, 2016, 28, 2533-2539.                                                                  | 21.0 | 387       |
| 5  | Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Advanced Science, 2016, 3, 1600156.                                                        | 11.2 | 343       |
| 6  | Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 2016, 4, 818-833.                                                                                    | 7.3  | 306       |
| 7  | Information metamaterials and metasurfaces. Journal of Materials Chemistry C, 2017, 5, 3644-3668.                                                                                                     | 5.5  | 297       |
| 8  | A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics, 2021, 4, 218-227.                                                 | 26.0 | 224       |
| 9  | Transmissionâ€Reflectionâ€Integrated Multifunctional Coding Metasurface for Fullâ€Space Controls of Electromagnetic Waves. Advanced Functional Materials, 2018, 28, 1802205.                          | 14.9 | 221       |
| 10 | Breaking Reciprocity with Spaceâ€Time oding Digital Metasurfaces. Advanced Materials, 2019, 31,<br>e1904069.                                                                                          | 21.0 | 208       |
| 11 | Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by<br>Pancharatnam-Berry Coding Metasurfaces. ACS Applied Materials & Interfaces, 2017, 9, 36447-36455. | 8.0  | 205       |
| 12 | Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces. ACS Photonics, 2016, 3, 1968-1977.                                   | 6.6  | 175       |
| 13 | Realization of Low Scattering for a High-Gain Fabry–Perot Antenna Using Coding Metasurface. IEEE<br>Transactions on Antennas and Propagation, 2017, 65, 3374-3383.                                    | 5.1  | 141       |
| 14 | Information Metamaterial Systems. IScience, 2020, 23, 101403.                                                                                                                                         | 4.1  | 132       |
| 15 | Frequencyâ€Dependent Dualâ€Functional Coding Metasurfaces at Terahertz Frequencies. Advanced<br>Optical Materials, 2016, 4, 1965-1973.                                                                | 7.3  | 125       |
| 16 | Digital Metasurface with Phase Code and Reflection–Transmission Amplitude Code for Flexible<br>Full‧pace Electromagnetic Manipulations. Advanced Optical Materials, 2019, 7, 1801429.                 | 7.3  | 104       |
| 17 | Machineâ€Learning Designs of Anisotropic Digital Coding Metasurfaces. Advanced Theory and Simulations, 2019, 2, 1800132.                                                                              | 2.8  | 100       |
| 18 | Programmable Controls to Scattering Properties ofÂaÂRadiation Array. Laser and Photonics Reviews,<br>2021, 15, 2000449.                                                                               | 8.7  | 93        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multichannel direct transmissions of near-field information. Light: Science and Applications, 2019, 8, 60.                                                                                                                  | 16.6 | 83        |
| 20 | Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit. Research, 2021, 2021, 5608038.                                                                                                                             | 5.7  | 79        |
| 21 | Gain- and Loss-Induced Topological Insulating Phase in a Non-Hermitian Electrical Circuit. Physical<br>Review Applied, 2020, 13, .                                                                                          | 3.8  | 77        |
| 22 | Multitasking Shared Aperture Enabled with Multiband Digital Coding Metasurface. Advanced Optical<br>Materials, 2018, 6, 1800657.                                                                                            | 7.3  | 76        |
| 23 | Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.<br>Advanced Science, 2017, 4, 1700098.                                                                                           | 11.2 | 72        |
| 24 | Wavenumber‧plitting Metasurfaces Achieve Multichannel Diffusive Invisibility. Advanced Optical<br>Materials, 2018, 6, 1800010.                                                                                              | 7.3  | 70        |
| 25 | Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface. IEEE Transactions on Antennas and Propagation, 2020, 68, 2984-2992.                                             | 5.1  | 69        |
| 26 | Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Applied Materials<br>& Interfaces, 2017, 9, 21503-21514.                                                                                       | 8.0  | 66        |
| 27 | Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Advanced Optical Materials, 2021, 9, 2100932.                                                           | 7.3  | 60        |
| 28 | Horn Antenna With Reconfigurable Beam-Refraction and Polarization Based on Anisotropic Huygens<br>Metasurface. IEEE Transactions on Antennas and Propagation, 2017, 65, 4427-4434.                                          | 5.1  | 59        |
| 29 | Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit. Research, 2019,<br>2019, 8609875.                                                                                                       | 5.7  | 55        |
| 30 | An Angle-Insensitive 3-Bit Reconfigurable Intelligent Surface. IEEE Transactions on Antennas and<br>Propagation, 2022, 70, 8798-8808.                                                                                       | 5.1  | 55        |
| 31 | Joint Multiâ€Frequency Beam Shaping and Steering via Space–Time oding Digital Metasurfaces. Advanced<br>Functional Materials, 2021, 31, 2007620.                                                                            | 14.9 | 52        |
| 32 | Microwave Vortexâ€Beam Emitter Based on Spoof Surface Plasmon Polaritons. Laser and Photonics<br>Reviews, 2018, 12, 1600316.                                                                                                | 8.7  | 49        |
| 33 | Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM<br>millimeter-wave wireless communications by time-domain digital coding metasurface. National Science<br>Review, 2022, 9, nwab134. | 9.5  | 46        |
| 34 | Octupole corner state in a three-dimensional topological circuit. Light: Science and Applications, 2020, 9, 145.                                                                                                            | 16.6 | 45        |
| 35 | Manipulations of Dual Beams with Dual Polarizations by Fullâ€Tensor Metasurfaces. Advanced Optical<br>Materials, 2016, 4, 1567-1572.                                                                                        | 7.3  | 44        |
| 36 | Frequency-multiplexed pure-phase microwave meta-holograms using bi-spectral 2-bit coding metasurfaces. Nanophotonics, 2020, 9, 703-714.                                                                                     | 6.0  | 42        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Reconfigurable Intelligent Surfaces: Simplified-Architecture Transmitters—From Theory to<br>Implementations. Proceedings of the IEEE, 2022, 110, 1266-1289.                                    | 21.3 | 37        |
| 38 | Space-Time-Coding Digital Metasurfaces: Principles and Applications. Research, 2021, 2021, 9802673.                                                                                            | 5.7  | 36        |
| 39 | Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms. Nanophotonics, 2020, 9, 2861-2877.                                           | 6.0  | 36        |
| 40 | Anisotropic Metasurface Holography in 3-D Space With High Resolution and Efficiency. IEEE Transactions on Antennas and Propagation, 2021, 69, 302-316.                                         | 5.1  | 34        |
| 41 | Beam Forming of Leaky Waves at Fixed Frequency Using Binary Programmable Metasurface. IEEE<br>Transactions on Antennas and Propagation, 2018, 66, 4942-4947.                                   | 5.1  | 33        |
| 42 | Intensityâ€Dependent Metasurface with Digitally Reconfigurable Distribution of Nonlinearity. Advanced Optical Materials, 2019, 7, 1900792.                                                     | 7.3  | 33        |
| 43 | Shaping electromagnetic waves using software-automatically-designed metasurfaces. Scientific Reports, 2017, 7, 3588.                                                                           | 3.3  | 32        |
| 44 | Analog signal processing through space-time digital metasurfaces. Nanophotonics, 2021, 10, 1753-1764.                                                                                          | 6.0  | 30        |
| 45 | Suboptimal Coding Metasurfaces for Terahertz Diffuse Scattering. Scientific Reports, 2018, 8, 11908.                                                                                           | 3.3  | 29        |
| 46 | Harmonic information transitions of spatiotemporal metasurfaces. Light: Science and Applications, 2020, 9, 198.                                                                                | 16.6 | 27        |
| 47 | Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics, 2020, 9, 3931-3939.                                                                                        | 6.0  | 27        |
| 48 | Spin-Symmetry Breaking Through Metasurface Geometric Phases. Physical Review Applied, 2019, 12, .                                                                                              | 3.8  | 26        |
| 49 | Wearable Conformal Metasurfaces for Polarization Division Multiplexing. Advanced Optical<br>Materials, 2020, 8, 2000068.                                                                       | 7.3  | 21        |
| 50 | Spaceâ€Frequencyâ€Domain Gradient Metamaterials. Advanced Optical Materials, 2018, 6, 1801086.                                                                                                 | 7.3  | 18        |
| 51 | Integration of Ultrathin Metasurfaces with a Lens for Efficient Polarization Division Multiplexing.<br>Advanced Optical Materials, 2019, 7, 1900116.                                           | 7.3  | 18        |
| 52 | Full controls of OAM vortex beam and realization of retro and negative reflections at oblique incidence using dual-band 2-bit coding metasurface. Materials Research Express, 2019, 6, 125804. | 1.6  | 18        |
| 53 | Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 035305.                                      | 2.8  | 16        |
| 54 | Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial. Scientific Reports, 2019, 9, 1809.                                                    | 3.3  | 15        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Programmable Wireless Channel for Multi-User MIMO Transmission Using Meta-Surface. , 2019, , .                                                                                                                                              |      | 15        |
| 56 | Angle-Insensitive 2-Bit Programmable Coding Metasurface with Wide Incident Angles. , 2019, , .                                                                                                                                              |      | 12        |
| 57 | Space-Time-Coding Digital Metasurfaces. , 2019, , .                                                                                                                                                                                         |      | 12        |
| 58 | Recent advances and perspectives on space-time coding digital metasurfaces. EPJ Applied Metamaterials, 2020, 7, 7.                                                                                                                          | 1.5  | 11        |
| 59 | Controls of transmitted electromagnetic waves for diverse functionalities using<br>polarization-selective dual-band 2 bit coding metasurface. Journal of Optics (United Kingdom), 2020,<br>22, 015104.                                      | 2.2  | 10        |
| 60 | Flexible Beam Manipulations by Reconfigurable Intelligent Surface With Independent Control of<br>Amplitude and Phase. Frontiers in Materials, 0, 9, .                                                                                       | 2.4  | 10        |
| 61 | Metasurfaces: Convolution Operations on Coding Metasurface to Reach Flexible and Continuous<br>Controls of Terahertz Beams (Adv. Sci. 10/2016). Advanced Science, 2016, 3, .                                                                | 11.2 | 8         |
| 62 | Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit. Research, 2019,<br>2019, 1-8.                                                                                                                           | 5.7  | 7         |
| 63 | Multifunctional Metasurfaces: Transmissionâ€Reflectionâ€Integrated Multifunctional Coding<br>Metasurface for Full‧pace Controls of Electromagnetic Waves (Adv. Funct. Mater. 33/2018). Advanced<br>Functional Materials, 2018, 28, 1870232. | 14.9 | 5         |
| 64 | Wideband and high-order microwave vortex-beam launcher based on spoof surface plasmon polaritons. Scientific Reports, 2021, 11, 23272.                                                                                                      | 3.3  | 5         |
| 65 | Programmable Manipulations of Terahertz Beams by Graphene-Based Metasurface With Both Amplitude<br>and Phase Modulations. Frontiers in Materials, 0, 9, .                                                                                   | 2.4  | 5         |
| 66 | A Low-RCS and high-gain partially reflecting surface antenna based on coding metasurface. , 2017, , .                                                                                                                                       |      | 4         |
| 67 | Optimal Multi-user Transmission based on a Single Intelligent Reflecting Surface. , 2021, , .                                                                                                                                               |      | 3         |
| 68 | Edge state mimicking topological behavior in a one-dimensional electrical circuit. New Journal of Physics, 2021, 23, 103005.                                                                                                                | 2.9  | 3         |
| 69 | Reflecting Metasurface Unit Cell Design with Multi-Bit Azimuthal Control. , 2021, , .                                                                                                                                                       |      | 3         |
| 70 | Generation of Broadband Multiple OAM Modes Using Pancharatnam-Berry Metasurface. , 2018, , .                                                                                                                                                |      | 2         |
| 71 | Digital Beam Scanning Technique Based on Space-Time-Modulated Coding Metasurface. , 2019, , .                                                                                                                                               |      | 2         |
| 72 | ä,囼2å‰å┧2017年第10å•第1期 ç›®å¼2•. Chinese Optics, 2017, 10, 1-2.                                                                                                                                                                               | 0.6  | 2         |

| #  | Article                                                                                                                  | IF | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 73 | Space-Time-Coding Digital Metasurfaces for New-Architecture Wireless Communications. , 2022, , .                         |    | 2         |
| 74 | Single-Layer Dual-Band Anisotropic Coding Metasurface With Frequency- and Polarization-Dependent Properties. , 2018, , . |    | 0         |
| 75 | Scattering diffusion control of electromagnetic and acoustic fields by multi-physics coding metamaterials. , 2019, , .   |    | 0         |
| 76 | Some Recent Advances in Space- Time-Coding Metasurfaces. , 2021, , .                                                     |    | 0         |
| 77 | Space-Time-Coding Digital Metasurfaces for Multiplexed Wireless Communications. , 2021, , .                              |    | 0         |
| 78 | Recent Advances in Space-Time-Coding Digital Metasurfaces. , 2020, , .                                                   |    | 0         |