Anil K Tyagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602476/publications.pdf

Version: 2024-02-01

		109321	149698
100	3,659	35	56
papers	citations	h-index	g-index
107	107	107	4085
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of ABCG2 efflux pumps renders the Mycobacterium tuberculosis hiding in mesenchymal stem cells responsive to antibiotic treatment. Infection, Genetics and Evolution, 2021, 87, 104662.	2.3	4
2	Unraveling the role of the transcriptional regulator VirS in low pH–induced responses of Mycobacterium tuberculosis and identification of VirS inhibitors. Journal of Biological Chemistry, 2019, 294, 10055-10075.	3.4	9
3	Challenges and Advances in TB Drug Discovery. , 2019, , 463-495.		2
4	A combination of docking and cheminformatics approaches for the identification of inhibitors against 4′ phosphopantetheinyl transferase of <i>Mycobacterium tuberculosis </i> . RSC Advances, 2018, 8, 328-341.	3.6	10
5	Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening. Drug Design, Development and Therapy, 2018, Volume 12, 1065-1079.	4.3	13
6	Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2018, 9, 1490.	4.8	45
7	Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 4653.	3.3	40
8	Boosting with recombinant MVA expressing M. tuberculosis α-crystallin antigen augments the protection imparted by BCG against tuberculosis in guinea pigs. Scientific Reports, 2017, 7, 17286.	3.3	8
9	An attenuated quadruple gene mutant of Mycobacterium tuberculosis imparts protection against tuberculosis in guinea pigs. Biology Open, 2017, 7, .	1.2	13
10	Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0169545.	2.5	42
11	bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs. PLoS ONE, 2017, 12, e0179513.	2.5	18
12	Novel isoniazid–amidoether derivatives: synthesis, characterization and antimycobacterial activity evaluation. MedChemComm, 2015, 6, 131-137.	3.4	28
13	Apurinic/Apyrimidinic Endonucleases of Mycobacterium tuberculosis Protect against DNA Damage but Are Dispensable for the Growth of the Pathogen in Guinea Pigs. PLoS ONE, 2014, 9, e92035.	2.5	7
14	Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis. MBio, 2014, 5, e02020.	4.1	64
15	Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their inÂvitro and inÂvivo antimycobacterial activity evaluation. European Journal of Medicinal Chemistry, 2014, 81, 301-313.	5.5	83
16	Reply to Jones and Niederweis. Journal of Infectious Diseases, 2014, 209, 971-972.	4.0	2
17	Gene cooption in Mycobacteria and search for virulence attributes: Comparative proteomic analyses of Mycobacterium tuberculosis, Mycobacterium indicus pranii and other mycobacteria. International Journal of Medical Microbiology, 2014, 304, 742-748.	3.6	51
18	Unique Residues at the 3-Fold and 4-Fold Axis of Mycobacterial Ferritin Are Involved in Oligomer Switching. Biochemistry, 2013, 52, 1694-1704.	2.5	10

#	Article	lF	CITATIONS
19	Disruption of Mycobactin Biosynthesis Leads to Attenuation of Mycobacterium tuberculosis for Growth and Virulence. Journal of Infectious Diseases, 2013, 208, 1255-1265.	4.0	129
20	Whole-Cell Screening-Based Identification of Inhibitors against the Intraphagosomal Survival of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 6372-6377.	3.2	12
21	KefB inhibits phagosomal acidification but its role is unrelated to M. tuberculosis survival in host. Scientific Reports, 2013, 3, 3527.	3.3	6
22	Adjunctive immunotherapy with \hat{l}_{\pm} -crystallin based DNA vaccination reduces Tuberculosis chemotherapy period in chronically infected mice. Scientific Reports, 2013, 3, 1821.	3.3	17
23	Secreted Acid Phosphatase (SapM) of Mycobacterium tuberculosis Is Indispensable for Arresting Phagosomal Maturation and Growth of the Pathogen in Guinea Pig Tissues. PLoS ONE, 2013, 8, e70514.	2.5	84
24	Endonuclease IV Is the Major Apurinic/Apyrimidinic Endonuclease in Mycobacterium tuberculosis and Is Important for Protection against Oxidative Damage. PLoS ONE, 2013, 8, e71535.	2.5	20
25	Secretory Phosphatases Deficient Mutant of Mycobacterium tuberculosis Imparts Protection at the Primary Site of Infection in Guinea Pigs. PLoS ONE, 2013, 8, e77930.	2.5	37
26	Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Research, 2012, 40, 10832-10850.	14.5	36
27	Response of the authors to the letter entitled, "Warning: Differences in the copy number of duplication unit 2 (DU2) within BCG Danish 1331 may influence findings involving genetically-modified BCG Danish strainsâ€-by Dr. Douglas S. Kernodle. Vaccine, 2012, 30, 6015.	3.8	0
28	Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases. BMC Genomics, 2012, 13, 520.	2.8	12
29	Iron Storage Proteins Are Essential for the Survival and Pathogenesis of Mycobacterium tuberculosis in THP-1 Macrophages and the Guinea Pig Model of Infection. Journal of Bacteriology, 2012, 194, 567-575.	2.2	123
30	Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses. Vaccine, 2011, 29, 8118-8125.	3.8	21
31	Diversity in Functional Organization of Class I and Class II Biotin Protein Ligase. PLoS ONE, 2011, 6, e16850.	2.5	5
32	Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs. PLoS ONE, 2011, 6, e22441.	2.5	22
33	Development of vaccines against tuberculosis. Tuberculosis, 2011, 91, 469-478.	1.9	11
34	Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis, 2011, 91, 456-468.	1.9	22
35	Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosisâ€"a potential target for the development of antitubercular drugs. Journal of Molecular Modeling, 2011, 17, 301-313.	1.8	20
36	Ferritin Structure from Mycobacterium tuberculosis: Comparative Study with Homologues Identifies Extended C-Terminus Involved in Ferroxidase Activity. PLoS ONE, 2011, 6, e18570.	2.5	57

#	Article	IF	CITATIONS
37	Latency Antigen α-Crystallin Based Vaccination Imparts a Robust Protection against TB by Modulating the Dynamics of Pulmonary Cytokines. PLoS ONE, 2011, 6, e18773.	2.5	28
38	A Booster Vaccine Expressing a Latency-Associated Antigen Augments BCG Induced Immunity and Confers Enhanced Protection against Tuberculosis. PLoS ONE, 2011, 6, e23360.	2.5	39
39	The sigma factors of <i>Mycobacteriumâ€∫tuberculosis</i> : regulation of the regulators. FEBS Journal, 2010, 277, 605-626.	4.7	141
40	Structural Ordering of Disordered Ligand-Binding Loops of Biotin Protein Ligase into Active Conformations as a Consequence of Dehydration. PLoS ONE, 2010, 5, e9222.	2.5	25
41	Dissecting the Role of Critical Residues and Substrate Preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e8387.	2.5	25
42	A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Research, 2009, 37, 4944-4954.	14.5	60
43	Facilitated Oligomerization of Mycobacterial GroEL: Evidence for Phosphorylation-Mediated Oligomerization. Journal of Bacteriology, 2009, 191, 6525-6538.	2.2	40
44	Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nature Chemical Biology, 2009, 5, 166-173.	8.0	119
45	Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine, 2009, 28, 63-70.	3.8	22
46	Polyphasic Taxonomic Analysis Establishes Mycobacterium indicus pranii as a Distinct Species. PLoS ONE, 2009, 4, e6263.	2.5	78
47	Crystal Structure of Bfr A from Mycobacterium tuberculosis: Incorporation of Selenomethionine Results in Cleavage and Demetallation of Haem. PLoS ONE, 2009, 4, e8028.	2.5	41
48	Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of bacterioferritin A from (i) Mycobacterium tuberculosis (i). Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 398-401.	0.7	10
49	Crystallization and preliminary X-ray diffraction analysis of biotin acetyl-CoA carboxylase ligase (BirA) fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 524-527.	0.7	1
50	Functional Studies of Multiple Thioredoxins from <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2008, 190, 7087-7095.	2.2	54
51	Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron. PLoS ONE, 2008, 3, e2087.	2.5	51
52	Enhanced and Enduring Protection against Tuberculosis by Recombinant BCG-Ag85C and Its Association with Modulation of Cytokine Profile in Lung. PLoS ONE, 2008, 3, e3869.	2.5	58
53	Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiological Genomics, 2007, 29, 66-75.	2.3	76
54	Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution. PLoS ONE, 2007, 2, e968.	2.5	39

#	Article	IF	CITATIONS
55	Mycobacterial transcriptional signals: requirements for recognition by RNA polymerase and optimal transcriptional activity. Nucleic Acids Research, 2006, 34, 4245-4257.	14.5	44
56	Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis. Tuberculosis, 2005, 85, 325-335.	1.9	33
57	Requirement of the mymA Operon for Appropriate Cell Wall Ultrastructure and Persistence of Mycobacterium tuberculosis in the Spleens of Guinea Pigs. Journal of Bacteriology, 2005, 187, 4173-4186.	2.2	101
58	Role of <i>Mycobacterium tuberculosis </i> Ser/Thr Kinase PknF: Implications in Glucose Transport and Cell Division. Journal of Bacteriology, 2005, 187, 3415-3420.	2.2	87
59	Expression and purification of recombinant 38-kDa and Mtb81 antigens of Mycobacterium tuberculosis for application in serodiagnosis. Protein Expression and Purification, 2005, 40, 169-176.	1.3	10
60	Expression and purification of recombinant antigens of Mycobacterium tuberculosis for application in serodiagnosis. Protein Expression and Purification, 2005, 44, 75-85.	1.3	20
61	Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine, 2005, 23, 5655-5665.	3.8	37
62	Oral Silibinin Inhibits Lung Tumor Growth in Athymic Nude Mice and Forms a Novel Chemocombination with Doxorubicin Targeting Nuclear Factor κB–Mediated Inducible Chemoresistance. Clinical Cancer Research, 2004, 10, 8641-8647.	7.0	116
63	Nuclear Localization and in Situ DNA Damage by Mycobacterium tuberculosis Nucleoside-diphosphate Kinase. Journal of Biological Chemistry, 2004, 279, 50142-50149.	3.4	27
64	Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis. Medical Microbiology and Immunology, 2004, 193, 19-25.	4.8	25
65	Nucleoside diphosphate kinase of Mycobacterium tuberculosisacts as GTPase-activating protein for Rho-GTPases. FEBS Letters, 2004, 571, 212-216.	2.8	31
66	Skewing of the Th1/Th2 responses in mice due to variation in the level of expression of an antigen in a recombinant BCG system. Immunology Letters, 2003, 88, 175-184.	2.5	35
67	Role of 5′-TGN-3′ motif in the interaction of mycobacterial RNA polymerase with a promoter of â€Â^extended âÂ^Â'10' class. FEMS Microbiology Letters, 2003, 225, 75-83.	1.8	25
68	mymAoperon ofMycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiology Letters, 2003, 227, 53-63.	1.8	78
69	Disruption of <i>mptpB</i> impairs the ability of <i>Mycobacterium tuberculosis</i> to survive in guinea pigs. Molecular Microbiology, 2003, 50, 751-762.	2.5	174
70	Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. FEBS Journal, 2003, 270, 625-634.	0.2	68
71	Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine–threonine kinases PknA and PknB. Biochemical and Biophysical Research Communications, 2003, 311, 112-120.	2.1	57
72	Recent Advances in Tuberculosis Research in India. Advances in Biochemical Engineering/Biotechnology, 2003, 84, 211-273.	1,1	3

#	Article	IF	Citations
73	Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology (United Kingdom), 2001, 147, 2307-2314.	1.8	95
74	Recombinant BCG approach for development of vaccines: cloning and expression of immunodominant antigens of M. tuberculosis. FEMS Microbiology Letters, 2000, 190, 309-316.	1.8	29
7 5	Cloning and Characterization of Secretory Tyrosine Phosphatases of <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2000, 182, 5425-5432.	2.2	170
76	Recombinant BCG approach for development of vaccines: cloning and expression of immunodominant antigens of M. tuberculosis. FEMS Microbiology Letters, 2000, 190, 309-316.	1.8	3
77	Analysis, expression and prevalence of the Mycobacterium tuberculosishomolog of bacterial virulence regulating proteins. FEMS Microbiology Letters, 1999, 172, 137-143.	1.8	15
78	Expression Systems for Study of Mycobacterial Gene Regulation and Development of Recombinant BCG Vaccines. Biochemical and Biophysical Research Communications, 1998, 246, 797-804.	2.1	54
79	Identification and Analysis of "Extended â^'10―Promoters from Mycobacteria. Journal of Bacteriology, 1998, 180, 2568-2573.	2.2	53
80	Construction of shuttle vectors for genetic manipulation and molecular analysis of mycobacteria. Gene, 1997, 190, 37-44.	2.2	61
81	MchAl and MchAll, two class-Il restriction endonucleases from Mycobacterium chelonei. Gene, 1993, 132, 119-123.	2.2	9
82	Sequence of a newly identified Mycobacterium tuberculosis gene encoding a protein with sequence homology to virulence-regulating proteins. Gene, 1993, 126, 157-158.	2.2	31
83	Purification and characterization of restriction endonuclease Mgol from Mycobacterium gordonae. Gene, 1993, 131, 153-154.	2.2	9
84	MfoAl, a novel isoschizomer ofHaellI fromMycobacterium fortuitumrecognizing 5′-GG/CC-3′. Nucleic Acids Research, 1992, 20, 2890-2890.	14.5	8
85	MhaAl, a novel isoschizomer ofPstl fromMycobacterium habanarecognizing 5′-CTGCA/G-3′. Nucleic Acids Research, 1992, 20, 2891-2891.	14.5	10
86	Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme. FEBS Journal, 1989, 183, 339-345.	0.2	4
87	Regulation of ornithine decarboxylase from Mycobacterium smegmatis. Archives of Biochemistry and Biophysics, 1988, 264, 288-294.	3.0	2
88	Role of polyamines in the synthesis of RNA in mycobacteria. Molecular and Cellular Biochemistry, 1987, 78, 3-8.	3.1	8
89	Benzofurano derivatives of coumarins as possible antifertility agents. Journal of Heterocyclic Chemistry, 1985, 22, 235-237.	2.6	1
90	Biochemical Pharmacology, Metabolism, and Mechanism of Action of L-Alanosine, a Novel, Natural Antitumor Agent. Advances in Pharmacology, 1984, 20, 69-121.	2.0	19

#	Article	IF	CITATIONS
91	Prospects for the chemotherapy of cancer using analogs ofl-aspartic acid. Trends in Pharmacological Sciences, 1983, 4, 299-304.	8.7	6
92	[19] Ornithine decarboxylase (Saccharomyces cerevisiae). Methods in Enzymology, 1983, 94, 135-139.	1.0	14
93	Inactivation of yeast ornithine decarboxylase by polyamines invivo does not result from the incorporation of polyamines into enzyme protein. Biochemical and Biophysical Research Communications, 1982, 109, 533-540.	2.1	21
94	Studies on the mechanism of resistance of selected murine tumors to l-alanosine. Biochemical Pharmacology, 1981, 30, 915-924.	4.4	12
95	Determinants of the toxicity of L-alanosine to various organs of the mouse. Toxicology, 1981, 21, 59-69.	4.2	5
96	Interaction of I-alanosine (NSC 153, 353) with enzymes metabolizing I-aspartic acid, I-glutamic acid and their amides. Biochemical Pharmacology, 1980, 29, 227-245.	4.4	23
97	A radiometric technique for the measurement of adenylosuccinate lyase. Journal of Proteomics, 1980, 2, 291-297.	2.4	3
98	Use of automated chromatography on the amino acid analyzer with lithium citrate buffers to separate nucleic acid bases, nucleosides, nucleotides and their precurosors. Journal of Proteomics, 1979, 1, 221-226.	2.4	9
99	Metabolites of alanosine, an antitumor antibiotic. Biochemical Pharmacology, 1979, 28, 3551-3566.	4.4	22
100	The Role of Mycobacterial Kinases and Phosphatases in Growth, Pathogenesis, and Cell Wall Metabolism., 0, , 323-343.		0