
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660225/publications.pdf Version: 2024-02-01

Υονς-Υλο Χιλ

#	Article	IF	CITATIONS
1	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45, 5925-5950.	18.7	2,969
2	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	5.8	1,036
3	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	7.8	861
4	Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chemistry, 2010, 2, 760-765.	6.6	810
5	Ti-based compounds as anode materials for Li-ion batteries. Energy and Environmental Science, 2012, 5, 6652.	15.6	775
6	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	11.7	672
7	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
8	Recent Progress in Aqueous Lithiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 830-840.	10.2	486
9	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	7.2	425
10	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	4.6	387
11	Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy and Environmental Science, 2011, 4, 4016.	15.6	366
12	A Selfâ€Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 382-386.	10.2	359
13	Controllable Synthesis of Mesoporous Peapodâ€like Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 7060-7064.	7.2	355
14	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	6.6	348
15	A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. Journal of Materials Chemistry, 2012, 22, 93-99.	6.7	343
16	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nature Communications, 2016, 7, 11741.	5.8	332
17	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy and Environmental Science, 2018, 11, 3075-3095.	15.6	324
18	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309

#	Article	IF	CITATIONS
19	Flexible and Wireâ€Shaped Microâ€Supercapacitor Based on Ni(OH) ₂ â€Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials, 2014, 24, 3405-3412.	7.8	304
20	Ordered Hierarchical Mesoporous/Macroporous Carbon: A Highâ€Performance Catalyst for Rechargeable Li–O ₂ Batteries. Advanced Materials, 2013, 25, 5668-5672.	11.1	297
21	Progress in Aqueous Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1703008.	10.2	297
22	Organic Batteries Operated at â^'70°C. Joule, 2018, 2, 902-913.	11.7	289
23	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Science Advances, 2016, 2, e1501038.	4.7	282
24	General Strategy to Synthesize Uniform Mesoporous TiO ₂ /Graphene/Mesoporous TiO ₂ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage. Nano Letters, 2015, 15, 2186-2193.	4.5	273
25	Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li ₂ MnO ₃ . ACS Applied Materials & Interfaces, 2016, 8, 1297-1308.	4.0	273
26	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	13.7	270
27	Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry, 2010, 20, 4223.	6.7	267
28	Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 6998.	6.7	266
29	Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 840-848.	6.6	255
30	General synthesis of carbon-coated nanostructure Li ₄ Ti ₅ O ₁₂ as a high rate electrode material for Li-ion intercalation. Journal of Materials Chemistry, 2010, 20, 595-602.	6.7	249
31	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702288.	10.2	249
32	Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titaniumâ€Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Advanced Energy Materials, 2011, 1, 1101-1108.	10.2	246
33	Uniform Ordered Two-Dimensional Mesoporous TiO ₂ Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. Journal of the American Chemical Society, 2018, 140, 4135-4143.	6.6	242
34	A high performance lithium-ion sulfur battery based on a Li ₂ S cathode using a dual-phase electrolyte. Energy and Environmental Science, 2015, 8, 1551-1558.	15.6	230
35	Highâ€Energy Rechargeable Metallic Lithium Battery at â^'70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 5623-5627.	7.2	217
36	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	4.6	215

#	Article	IF	CITATIONS
37	Layered H ₂ Ti ₆ O ₁₃ â€Nanowires: A New Promising Pseudocapacitive Material in Nonâ€Aqueous Electrolyte. Advanced Functional Materials, 2012, 22, 5185-5193.	7.8	213
38	Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry, 2009, 19, 3661.	6.7	204
39	To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Energy and Environmental Science, 2016, 9, 224-231.	15.6	196
40	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	5.8	194
41	A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017, 7, 23494-23501.	1.7	186
42	<i>In situ</i> encapsulation of core–shell-structured Co@Co ₃ O ₄ into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 1443-1453.	5.2	178
43	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds. Journal of the Electrochemical Society, 2006, 153, A1425.	1.3	162
44	Grapheneâ€5upported Nitrogen and Boron Rich Carbon Layer for Improved Performance of Lithium–Sulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. Advanced Energy Materials, 2016, 6, 1501733.	10.2	162
45	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 11, 959.	5.8	157
46	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9126-9130.	7.2	154
47	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	1.6	151
48	Flexible Aqueous Lithiumâ€lon Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 7474-7477.	7.2	149
49	Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy and Environmental Science, 2014, 7, 705-714.	15.6	136
50	Double-Nanocarbon Synergistically Modified Na ₃ V ₂ (PO ₄) ₃ : An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15341-15351.	4.0	133
51	LiMn ₂ O ₄ Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery. Journal of Physical Chemistry C, 2008, 112, 12051-12057.	1.5	129
52	A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8488.	5.2	128
53	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie - International Edition, 2017, 56, 7505-7509.	7.2	124
54	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem, 2020, 13, 2160-2185.	3.6	121

#	Article	IF	CITATIONS
55	The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. Journal of Solid State Electrochemistry, 2010, 14, 109-114.	1.2	118
56	Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode. Nano-Micro Letters, 2021, 13, 79.	14.4	117
57	General synthesis of xLi2MnO3·(1 â^' x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 25380.	6.7	115
58	Carbon quantum dots anchoring MnO 2 /graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. Journal of Power Sources, 2018, 398, 167-174.	4.0	114
59	The development in aqueous lithium-ion batteries. Journal of Energy Chemistry, 2018, 27, 1521-1535.	7.1	114
60	Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries. Advanced Materials, 2018, 30, 1703891.	11.1	113
61	Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. Journal of Materials Chemistry A, 2019, 7, 6080-6089.	5.2	112
62	Allâ€Organic Rechargeable Battery with Reversibility Supported by "Waterâ€inâ€Salt―Electrolyte. Chemistry - A European Journal, 2017, 23, 2560-2565.	1.7	111
63	Industrial scale production of fibre batteries by a solution-extrusion method. Nature Nanotechnology, 2022, 17, 372-377.	15.6	110
64	SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, 7, 1466-1476.	5.8	108
65	Leafâ€Like Grapheneâ€Oxideâ€Wrapped Sulfur for Highâ€Performance Lithium–Sulfur Battery. Advanced Science, 2015, 2, 1500071.	5.6	108
66	Wholeâ€Voltageâ€Range Oxygen Redox in P2â€Layered Cathode Materials for Sodiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2008194.	11.1	108
67	Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. National Science Review, 2020, 7, 333-341.	4.6	104
68	Polyimide as anode electrode material for rechargeable sodium batteries. RSC Advances, 2014, 4, 25369-25373.	1.7	102
69	Enhancement on the Cycling Stability of the Layered Ni-Rich Oxide Cathode by In-Situ Fabricating Nano-Thickness Cation-Mixing Layers. Journal of the Electrochemical Society, 2016, 163, A2665-A2672.	1.3	101
70	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	15.6	101
71	Efficient Oxygen Electrocatalyst for Zn–Air Batteries: Carbon Dots and Co ₉ S ₈ Nanoparticles in a N,S-Codoped Carbon Matrix. ACS Applied Materials & Interfaces, 2019, 11, 14085-14094.	4.0	96
72	Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 447-472.	13.1	96

#	Article	IF	CITATIONS
73	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	4.0	94
74	Li ₂ TiSiO ₅ : a low potential and large capacity Ti-based anode material for Li-ion batteries. Energy and Environmental Science, 2017, 10, 1456-1464.	15.6	93
75	ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging. Journal of Materials Chemistry, 2012, 22, 13159.	6.7	91
76	Promoting Rechargeable Batteries Operated at Low Temperature. Accounts of Chemical Research, 2021, 54, 3883-3894.	7.6	91
77	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy and Environmental Science, 2019, 12, 2741-2750.	15.6	89
78	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	7.2	89
79	Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2001, 148, A471.	1.3	87
80	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 8835.	6.7	87
81	Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie - International Edition, 2019, 58, 6200-6206.	7.2	87
82	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamineâ€Based Battery Electrode. Angewandte Chemie - International Edition, 2018, 57, 2904-2908.	7.2	86
83	Binary Li ₄ Ti ₅ O ₁₂ ‣i ₂ Ti ₃ O ₇ Nanocomposite as an Anode Material for Liâ€ŀon Batteries. Advanced Functional Materials, 2013, 23, 640-647.	7.8	83
84	LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochemistry Communications, 2007, 9, 1404-1409.	2.3	82
85	Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Materials Today Energy, 2020, 18, 100563.	2.5	82
86	Lowâ€Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Advanced Science, 2020, 7, 2000196.	5.6	82
87	Monoclinic Phase Na ₃ Fe ₂ (PO ₄) ₃ : Synthesis, Structure, and Electrochemical Performance as Cathode Material in Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 1306-1314.	3.2	81
88	Carbon Quantum Dot-Induced MnO ₂ Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2017, 9, 40394-40403.	4.0	81
89	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 25624-25638.	7.2	81
90	Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy, 2021, 83, 105847.	8.2	79

#	Article	IF	CITATIONS
91	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1300600.	10.2	78
92	Improving the Cycling Performance of the Layered Ni-Rich Oxide Cathode by Introducing Low-Content Li 2 MnO 3. Electrochimica Acta, 2016, 189, 101-110.	2.6	78
93	Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. ChemSusChem, 2020, 13, 5556-5564.	3.6	78
94	Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2020, 331, 135296.	2.6	77
95	A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nature Communications, 2018, 9, 438.	5.8	76
96	Sandwich, Verticalâ€Channeled Thick Electrodes with High Rate and Cycle Performance. Advanced Functional Materials, 2019, 29, 1809196.	7.8	76
97	High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chemical Engineering Journal, 2020, 390, 124653.	6.6	76
98	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	4.0	75
99	Graphene/silk fibroin based carbon nanocomposites for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 773-781.	5.2	74
100	Redox mediators as charge agents for changing electrochemical reactions. Chemical Society Reviews, 2020, 49, 7454-7478.	18.7	73
101	A lithium air battery with a lithiated Al–carbon anode. Chemical Communications, 2015, 51, 676-678.	2.2	72
102	Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu ₆ Sn ₅ Layer. ACS Energy Letters, 2019, 4, 1725-1731.	8.8	71
103	First-Principles Study of H ⁺ Intercalation in Layer-Structured LiCoO ₂ . Journal of Physical Chemistry C, 2011, 115, 12672-12676.	1.5	70
104	Water-stable blue-emitting ZnO@polymer core–shell microspheres. Journal of Materials Chemistry, 2007, 17, 2490-2496.	6.7	69
105	Stabilizing Solid Electrolyte Interphases on Both Anode and Cathode for High Areal Capacity, Highâ€Voltage Lithium Metal Batteries with High Li Utilization and Lean Electrolyte. Advanced Functional Materials, 2020, 30, 2002824.	7.8	69
106	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. Journal of Materials Chemistry, 2011, 21, 13025.	6.7	68
107	High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chemical Communications, 2013, 49, 2204.	2.2	67
108	Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 1192-1200.	5.2	67

#	Article	IF	CITATIONS
109	A Simple Prelithiation Strategy To Build a Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery with Improved Lowâ€Temperature Performance. Angewandte Chemie - International Edition, 2017, 56, 16606-16610.	7.2	67
110	Ultra-long Na ₂ Ti ₃ O ₇ nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17111-17120.	5.2	65
111	A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochemistry Communications, 2006, 8, 1775-1778.	2.3	64
112	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63
113	Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. Journal of Power Sources, 2019, 437, 226917.	4.0	63
114	Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. Journal of Materials Chemistry, 2006, 16, 1345.	6.7	62
115	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 11689-11698.	4.0	62
116	A New Polyanion Na ₃ Fe ₂ (PO ₄)P ₂ O ₇ Cathode with High Electrochemical Performance for Sodium-Ion Batteries. ACS Energy Letters, 2020, 5, 3788-3796.	8.8	62
117	A flexible symmetric sodium full cell constructed using the bipolar material Na ₃ V ₂ (PO ₄) ₃ . Journal of Materials Chemistry A, 2017, 5, 8440-8450.	5.2	61
118	Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature. Chemical Communications, 2020, 56, 9640-9643.	2.2	61
119	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
120	Low-cost and high-performance of a vertically grown 3D Ni–Fe layered double hydroxide/graphene aerogel supercapacitor electrode material. RSC Advances, 2016, 6, 107278-107285.	1.7	60
121	A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode. Journal of Materials Chemistry A, 2018, 6, 6022-6032.	5.2	59
122	Creating an Airâ€Stable Sulfurâ€Doped Black Phosphorusâ€TiO ₂ Composite as Highâ€Performance Anode Material for Sodiumâ€Ion Storage. Advanced Functional Materials, 2019, 29, 1900535.	7.8	57
123	A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. Journal of Solid State Electrochemistry, 2006, 10, 405-410.	1.2	56
124	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. Science Bulletin, 2019, 64, 1780-1787.	4.3	56
125	Organic Protonâ€Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Angewandte Chemie - International Edition, 2019, 58, 4622-4626.	7.2	56
126	Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. Journal of Power Sources, 2020, 461, 228130.	4.0	55

#	Article	IF	CITATIONS
127	TiP ₂ O ₇ and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8075-8082.	4.0	54
128	Ultrasmall TiO ₂ -Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 14818-14826.	4.0	54
129	A Desolvationâ€Free Sodium Dualâ€Ion Chemistry for High Power Density and Extremely Low Temperature. Angewandte Chemie - International Edition, 2021, 60, 23858-23862.	7.2	54
130	Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26924-26935.	4.0	53
131	Cycling Stability of Spinel LiMn 2 O 4 with Different Particle Sizes in Aqueous Electrolyte. Electrochimica Acta, 2015, 173, 178-183.	2.6	52
132	Carbon-coated Li ₄ Ti ₅ O ₁₂ nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10902-10908.	5.2	52
133	Highâ€Energy Rechargeable Metallic Lithium Battery at â^70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie, 2019, 131, 5679-5683.	1.6	52
134	Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries. Journal of Power Sources, 2020, 476, 228550.	4.0	52
135	An agent for change. Nature Chemistry, 2013, 5, 445-447.	6.6	51
136	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38141-38150.	4.0	51
137	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie, 2017, 129, 7613-7617.	1.6	50
138	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. Angewandte Chemie - International Edition, 2019, 58, 15863-15868.	7.2	50
139	In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage. Journal of Power Sources, 2020, 445, 227271.	4.0	50
140	Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy and Environmental Science, 2021, 14, 883-889.	15.6	49
141	Ammonium-ion batteries with a wide operating temperature window from â~'40 to 80Â °C. EScience, 2021, 1, 212-218.	25.0	49
142	Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods. Chemical Engineering Journal, 2022, 442, 136349.	6.6	49
143	Core–shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 7202.	6.7	48
144	Photoluminescent ZnO nanoparticles synthesized at the interface between air and triethylene glycol. Journal of Materials Chemistry, 2011, 21, 3178.	6.7	48

#	Article	IF	CITATIONS
145	Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors. Journal of Materials Chemistry, 2012, 22, 1937-1943.	6.7	47
146	Zn ₄ Sb ₃ Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability. Advanced Energy Materials, 2013, 3, 286-289.	10.2	46
147	Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li ₂ TiSiO ₅ anode coupled with a lignin-derived activated carbon cathode. Journal of Materials Chemistry A, 2019, 7, 8234-8244.	5.2	46
148	Sandwich-like Cr ₂ O ₃ –graphite intercalation composites as high-stability anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1703-1708.	5.2	45
149	CNT-Decorated Na ₄ Mn ₂ Co(PO ₄) ₂ P ₂ O ₇ Microspheres as a Novel High-Voltage Cathode Material for Sodium-Ion Batteries. ACS Applied Materials &: Interfaces. 2019. 11. 27813-27822.	4.0	44
150	Highly Stable Na ₃ Fe ₂ (PO ₄) ₃ @Hard Carbon Sodium-Ion Full Cell for Low-Cost Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 1380-1387.	3.2	44
151	All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ionics, 2017, 300, 114-119.	1.3	43
152	A high voltage cathode of Na _{2+2x} Fe _{2â^'x} (SO ₄) ₃ intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. Journal of Materials Chemistry A, 2018, 6, 4354-4364.	5.2	43
153	Dual Lithiophilic Structure for Uniform Li Deposition. ACS Applied Materials & Interfaces, 2019, 11, 10616-10623.	4.0	43
154	An All-Solid-State Sodium–Sulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. ACS Applied Energy Materials, 2019, 2, 5263-5271.	2.5	42
155	Li/Garnet Interface Stabilization by Thermalâ€Decomposition Vapor Deposition of an Amorphous Carbon Layer. Angewandte Chemie - International Edition, 2020, 59, 5346-5349.	7.2	42
156	O3â€Type Layered Niâ€Rich Oxide: A Highâ€Capacity and Superiorâ€Rate Cathode for Sodiumâ€lon Batteries. Si 2019, 15, e1905311.	nall. 5.2	41
157	TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 3352.	1.7	40
158	Electrochemical Profile of LiTi ₂ (PO ₄) ₃ and NaTi ₂ (PO ₄) ₃ in Lithium, Sodium or Mixed Ion Aqueous Solutions. Journal of the Electrochemical Society, 2016, 163, A904-A910.	1.3	40
159	Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn ₂ O ₄ Cathode. ACS Sustainable Chemistry and Engineering, 2017, 5, 1503-1508.	3.2	40
160	Integrating Desalination and Energy Storage using a Saltwaterâ€based Hybrid Sodiumâ€ion Supercapacitor. ChemSusChem, 2018, 11, 1741-1745.	3.6	40
161	An all-climate CFx/Li battery with mechanism-guided electrolyte. Energy Storage Materials, 2021, 42, 477-483.	9.5	40
162	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo ₂ O ₄ nanoparticles as bifunctional oxygen catalysts for rechargeable Zn–air batteries. Nanoscale, 2017, 9, 11148-11157.	2.8	39

#	Article	IF	CITATIONS
163	Intercalation Pseudocapacitive Nanoscale Nickel Hexacyanoferrate@Carbon Nanotubes as a High-Rate Cathode Material for Aqueous Sodium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 3655-3663.	3.2	39
164	An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates. Electrochemistry Communications, 2015, 55, 6-9.	2.3	38
165	An Al-doped high voltage cathode of Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ enabling highly stable 4 V full sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18940-18949.	5.2	37
166	K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. Journal of Alloys and Compounds, 2019, 784, 939-946.	2.8	37
167	Enhanced hydrogen evolution of MoS ₂ /RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorganic Chemistry Frontiers, 2018, 5, 2092-2099.	3.0	36
168	Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon. ACS Applied Materials & amp; Interfaces, 2021, 13, 58818-58826.	4.0	36
169	Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries. Journal of Solid State Electrochemistry, 2007, 11, 805-810.	1.2	35
170	Re-building Daniell Cell with a Li-ion exchange Film. Scientific Reports, 2014, 4, 6916.	1.6	35
171	Black Phosphorus Stabilizing Na ₂ Ti ₃ O ₇ /C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 37163-37171.	4.0	35
172	Organic Protonâ€Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Angewandte Chemie, 2019, 131, 4670-4674.	1.6	35
173	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	15.6	35
174	Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance. Electrochimica Acta, 2007, 52, 4525-4531.	2.6	32
175	Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. New Journal of Chemistry, 2013, 37, 1768.	1.4	31
176	A core–shell-structured TiO ₂ (B) nanofiber@porous RuO ₂ composite as a carbon-free catalytic cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 21123-21132.	5.2	31
177	Li2TiSiO5 and expanded graphite nanocomposite anode material withÂimproved rate performance for lithium-ion batteries. Electrochimica Acta, 2018, 260, 695-702.	2.6	31
178	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie, 2021, 133, 25828-25842.	1.6	31
179	Comparison of thermal stability between micro- and nano-sized materials for lithium-ion batteries. Electrochemistry Communications, 2013, 33, 115-118.	2.3	30
180	A hybrid aerogel of Co–Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Advances, 2015, 5, 26017-26026.	1.7	30

#	Article	IF	CITATIONS
181	Mechanism-of-Action Elucidation of Reversible Li–CO ₂ Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 7396-7404.	4.0	30
182	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	5.2	29
183	Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis. Advanced Functional Materials, 2021, 31, 2104543.	7.8	29
184	In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery. Electrochimica Acta, 2014, 133, 564-569.	2.6	28
185	Base–acid hybrid water electrolysis. Chemical Communications, 2016, 52, 3147-3150.	2.2	28
186	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28
187	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€lon Batteries Operated at â^40°C. Advanced Materials, 2022, 34, e2202873.	11.1	28
188	Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 315-323.	7.1	27
189	Boron Nitrideâ€Based Release Agent Coating Stabilizes Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface with Superior Leanâ€Lithium Electrochemical Performance and Thermal Stability. Advanced Functional Materials. 2022. 32	7.8	27
190	Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode. Journal of Power Sources, 2018, 384, 10-17.	4.0	26
191	S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. Electrochimica Acta, 2018, 281, 789-795.	2.6	26
192	Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries. Chemical Engineering Journal, 2019, 363, 285-291.	6.6	26
193	Spinel-Layered Intergrowth Composite Cathodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 45997-46004.	4.0	26
194	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO ₄ F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231.	3.2	26
195	Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. Journal of Power Sources, 2020, 451, 227734.	4.0	25
196	Multishelled Ni ₂ P Microspheres as Multifunctional Sulfur Host 3D-Printed Cathode Materials Ensuring High Areal Capacity of Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 6097-6106.	3.2	25
197	Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production. Energy Storage Materials, 2018, 11, 260-266.	9.5	24
198	Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics, 2019, 25, 1083-1090.	1.2	24

#	Article	IF	CITATIONS
199	Allâ€Climate Ironâ€Based Sodiumâ€Ion Full Cell for Energy Storage. Advanced Functional Materials, 2021, 31, 2102856.	7.8	24
200	Three-Dimensional Ordered Macroporous FePO ₄ as High-Efficiency Catalyst for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31638-31645.	4.0	23
201	Ni ₃ [Fe(CN) ₆] ₂ nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1683-1689.	3.0	23
202	Garnet-Based All-Ceramic Lithium Battery Enabled by Li2.985B0.005OCl Solder. IScience, 2020, 23, 101071.	1.9	23
203	Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode. ACS Applied Materials & Interfaces, 2021, 13, 47728-47739.	4.0	23
204	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie, 2017, 129, 9254-9258.	1.6	22
205	Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. Chemical Communications, 2020, 56, 8257-8260.	2.2	22
206	Dendriteâ€Free and Long ycling Sodium Metal Batteries Enabled by Sodiumâ€Ether Cointercalated Graphite Anode. Advanced Functional Materials, 2021, 31, 2009778.	7.8	22
207	Ferromagnetic 1D-Fe ₃ O ₄ @C Microrods Boost Polysulfide Anchoring for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3921-3927.	2.5	22
208	Liquid Polymer Nanocomposites PEGMEâ^'SnO2and PEGMEâ^'TiO2Prepared through Solvothermal Methods. Chemistry of Materials, 2006, 18, 3850-3854.	3.2	21
209	Proton-Induced Dysfunction Mechanism of Cathodes in an Aqueous Lithium Ion Battery. Journal of Physical Chemistry C, 2013, 117, 6929-6932.	1.5	21
210	Flexible Aqueous Lithiumâ€lon Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie, 2016, 128, 7600-7603.	1.6	20
211	Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries. lonics, 2019, 25, 4171-4177.	1.2	20
212	A Thinâ€Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell. Advanced Energy Materials, 2013, 3, 713-717.	10.2	19
213	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. New Journal of Chemistry, 2017, 41, 13060-13066.	1.4	18
214	Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. Electrochimica Acta, 2019, 320, 134555.	2.6	18
215	Positive Surface Pseudocapacitive Behaviorâ€Induced Fast and Large Liâ€ion Storage in Mesoporous LiMnPO ₄ @C Nanofibers. ChemSusChem, 2019, 12, 3817-3826.	3.6	18
216	A New Strategy of Constructing a Highly Fluorinated Solidâ€Electrolyte Interface towards Highâ€Performance Lithium Anode. Advanced Materials Interfaces, 2020, 7, 2000154.	1.9	18

#	Article	IF	CITATIONS
217	Ultrathin Silicon Nanolayer Implanted Ni _{<i>x</i>} Si/Ni Nanoparticles as Superlongâ€Cycle Lithiumâ€lon Anode Material. Small Structures, 2021, 2, 2000126.	6.9	18
218	A sulfur–FePO ₄ –C nanocomposite cathode for stable and anti-self-discharge lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17926-17932.	5.2	17
219	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamineâ€Based Battery Electrode. Angewandte Chemie, 2018, 130, 2954-2958.	1.6	17
220	Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries. Journal of Power Sources, 2018, 375, 102-105.	4.0	17
221	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 22930-22938.	5.2	17
222	A Highâ€Rate and Longâ€Life Rechargeable Battery Operated at â^75  o C. Batteries and Supercaps, 2020, 3, 1016-1020.	2.4	17
223	Fabrication of Dualâ€Modified Carbon Network Enabling Improved Electronic and Ionic Conductivities for Fast and Durable Li ₂ TiSiO ₅ Anodes. ChemElectroChem, 2019, 6, 3020-3029.	1.7	16
224	Nitrogen-Doped Porous Carbon Framework Supports Ultrafine FeS ₂ Nanoparticles as Advanced Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6874-6882.	2.5	16
225	Lithium ion storage in lithium titanium germanate. Nano Energy, 2019, 66, 104094.	8.2	15
226	Fundamental studies on the synthesis of supported metal nanoparticles: steric hindrance and coordination effects of anionic stabilizers. Journal of Materials Chemistry, 2012, 22, 15418.	6.7	14
227	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of Na2Ti3O7 Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. ACS Omega, 2017, 2, 5726-5736.	1.6	14
228	Hierarchical porous ZnMnO ₃ yolk–shell microspheres with superior lithium storage properties enabled by a unique one-step conversion mechanism. RSC Advances, 2018, 8, 31388-31395.	1.7	14
229	Solid-electrolyte interphase formation process on Li2TiSiO5 anode in LiPF6-based carbonate electrolyte. Journal of Power Sources, 2020, 467, 228292.	4.0	14
230	Lithium dendrites suppressed by low temperature in-situ anti-perovskite coated garnet solid-state electrolyte. Journal of Power Sources, 2021, 500, 229982.	4.0	14
231	Fluorinated Carbon Materials and the Applications in Energy Storage Systems. ACS Applied Energy Materials, 2022, 5, 3966-3978.	2.5	14
232	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125.	4.2	13
233	Polypyrrole-Coated K ₂ Mn[Fe(CN) ₆] Stabilizing Its Interfaces and Inhibiting Irreversible Phase Transition during the Zinc Storage Process in Aqueous Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1092-1101.	4.0	13
234	Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe ₂ O ₃ nanotube anodes. Journal of Materials Chemistry A, 2014, 2, 20177-20181.	5.2	12

#	Article	IF	CITATIONS
235	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. Batteries and Supercaps, 2019, 2, 867-873.	2.4	12
236	A New Germanium-Based Anode Material with High Stability for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11883-11890.	3.2	12
237	A Low Temperature Soldered All Ceramic Lithium Battery. ACS Applied Materials & Interfaces, 2022, 14, 1149-1156.	4.0	12
238	Leafâ€like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices. Advanced Functional Materials, 2013, 23, 4840-4846.	7.8	11
239	A rechargeable metal-free full-liquid sulfur–bromine battery for sustainable energy storage. Journal of Materials Chemistry A, 2018, 6, 20737-20745.	5.2	11
240	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	1.6	11
241	Throwing Light on Next-Generation Electrochromic Energy Storage Smart Windows. ACS Central Science, 2020, 6, 2130-2132.	5.3	11
242	Prussian Blue Cathode with Intercalation Pseudocapacitive Behavior for Lowâ€Temperature Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100105.	2.8	11
243	Nonstoichiometric Molybdenum Trioxide Adjustable Energy Barrier Enabling Ultralong-Life All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60907-60920.	4.0	11
244	Progress, challenges and perspectives of computational studies on glassy superionic conductors for solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 11854-11880.	5.2	11
245	VPO ₄ F Fluorophosphates Polyanion Cathodes for Highâ€Voltage Proton Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
246	SiO _x and carbon double-layer coated Si nanorods as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 101008-101015.	1.7	10
247	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
248	Promoting polysulfide redox kinetics by tuning the non-metallic p-band of Mo-based compounds. Journal of Materials Chemistry A, 2022, 10, 11477-11487.	5.2	10
249	A Simple Prelithiation Strategy To Build a Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery with Improved Lowâ€Temperature Performance. Angewandte Chemie, 2017, 129, 16833-16837.	1.6	9
250	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, .	4.6	9
251	Themed issue on flexible energy storage and conversion. Journal of Materials Chemistry A, 2014, 2, 10710.	5.2	8
252	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. Angewandte Chemie, 2019, 131, 16010-16015.	1.6	8

#	Article	IF	CITATIONS
253	Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from â^60 to +55 °C. ACS Applied Materials & Interfaces, 2021, 13, 45630-45638.	4.0	6
254	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 4399-4405.	3.2	5
255	Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie, 2019, 131, 6266-6272.	1.6	5
256	Sodiumâ€lon Batteries: O3â€Type Layered Niâ€Rich Oxide: A Highâ€Capacity and Superiorâ€Rate Cathode for Sodiumâ€lon Batteries (Small 52/2019). Small, 2019, 15, 1970282.	5.2	5
257	A Desolvationâ€Free Sodium Dualâ€Ion Chemistry for High Power Density and Extremely Low Temperature. Angewandte Chemie, 2021, 133, 24051.	1.6	5
258	Advanced aqueous batteries: Status and challenges. MRS Energy & Sustainability, 2022, 9, 106-128.	1.3	5
259	Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly(ethylene) Tj ETQq1 1	0.784314 6.7	rgBT /Overlo
260	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. Advanced Materials Interfaces, 2016, 3, 1500496.	1.9	4
261	Na1.68H0.32Ti2O3SiO4·1.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. ACS Applied Energy Materials, 2018, , .	2.5	4
262	Dual oxidation by hybrid electrode: Efficiency enhancement of direct hypophosphite fuel cell. Journal of Power Sources, 2019, 438, 226983.	4.0	4
263	Lithiumâ€Metal Anodes: Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries (Adv. Mater. 1/2018). Advanced Materials, 2018, 30, 1870005.	11.1	3
264	Hypophosphites as Ecoâ€Compatible Fuels for Membraneâ€Free Direct Liquid Fuel Cells. Chemistry - A European Journal, 2018, 24, 10310-10314.	1.7	3
265	Li/Garnet Interface Stabilization by Thermalâ€Đecomposition Vapor Deposition of an Amorphous Carbon Layer. Angewandte Chemie, 2020, 132, 5384-5387.	1.6	3
266	Electronic Structure of Anode Material Li ₂ TiSiO ₅ and Its Structural Evolution during Lithiation. Journal of Physical Chemistry C, 2021, 125, 3733-3744.	1.5	3
267	Theory-Guided Design of Anode Catalysts for Hydrogenous Liquid Fuels. Journal of Physical Chemistry C, 2020, 124, 17494-17502.	1.5	1
268	Frontispiz: Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie, 2019, 131, .	1.6	0
269	Frontispiece: Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
270	VPO4F Fluorophosphates Polyanion Cathodes forÂHighâ€Voltage Proton Storage. Angewandte Chemie, 0, , .	1.6	0