Hong You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602175/publications.pdf

Version: 2024-02-01

53	1,362	21 h-index	34
papers	citations		g-index
56	56	56	1330
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Schistosomiasis vaccines: where do we stand?. Parasites and Vectors, 2016, 9, 528.	2.5	121
2	Schistosomiasisâ€"from immunopathology to vaccines. Seminars in Immunopathology, 2020, 42, 355-371.	6.1	90
3	Cloning and Characterisation of Schistosoma japonicum Insulin Receptors. PLoS ONE, 2010, 5, e9868.	2.5	76
4	Vaccination of Dogs againstEchinococcus granulosus,the Cause of Cystic Hydatid Disease in Humans. Journal of Infectious Diseases, 2006, 194, 966-974.	4.0	68
5	Circulating miRNAs: Potential Novel Biomarkers for Hepatopathology Progression and Diagnosis of Schistosomiasis Japonica in Two Murine Models. PLoS Neglected Tropical Diseases, 2015, 9, e0003965.	3.0	65
6	Transcriptional Responses of In Vivo Praziquantel Exposure in Schistosomes Identifies a Functional Role for Calcium Signalling Pathway Member CamKII. PLoS Pathogens, 2013, 9, e1003254.	4.7	61
7	The insulin receptor is a transmission blocking veterinary vaccine target for zoonotic Schistosoma japonicum. International Journal for Parasitology, 2012, 42, 801-807.	3.1	59
8	Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathogens, 2019, 15, e1007513.	4.7	49
9	Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential. PLoS Neglected Tropical Diseases, 2015, 9, e0003730.	3.0	46
10	Transcriptional profiles of adult male and female Schistosoma japonicum in response to insulin reveal increased expression of genes involved in growth and development. International Journal for Parasitology, 2009, 39, 1551-1559.	3.1	45
11	Rodents, goats and dogs – their potential roles in the transmission of schistosomiasis in China. Parasitology, 2017, 144, 1633-1642.	1.5	38
12	Immunoglobulin profiles in a murine intermediate host model of resistance for Echinococcus granulosus infection. Parasite Immunology, 2003, 25, 161-168.	1.5	33
13	Further studies on an intermediate host murine model showing that a primary Echinococcus granulosus infection is protective against subsequent oncospheral challenge. Parasitology International, 2001, 50, 279-283.	1.3	31
14	A Pilot Study for Control of Hyperendemic Cystic Hydatid Disease in China. PLoS Neglected Tropical Diseases, 2009, 3, e534.	3.0	31
15	Signalling pathways and the hostâ€parasite relationship: Putative targets for control interventions against schistosomiasis. BioEssays, 2011, 33, 203-214.	2.5	29
16	Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasites and Vectors, 2019, 12, 173.	2.5	29
17	Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies. Frontiers in Genetics, 2014, 5, 176.	2.3	27
18	Schistosome Vaccines for Domestic Animals. Tropical Medicine and Infectious Disease, 2018, 3, 68.	2.3	27

#	Article	IF	Citations
19	Schistosome Vaccine Adjuvants in Preclinical and Clinical Research. Vaccines, 2014, 2, 654-685.	4.4	26
20	Vaccines and diagnostics for zoonotic schistosomiasis japonica. Parasitology, 2015, 142, 271-289.	1.5	23
21	Suppression of Schistosoma japonicum Acetylcholinesterase Affects Parasite Growth and Development. International Journal of Molecular Sciences, 2018, 19, 2426.	4.1	23
22	A comparative proteomics analysis of the egg secretions of three major schistosome species. Molecular and Biochemical Parasitology, 2020, 240, 111322.	1.1	21
23	CRISPR/Cas9â€mediated genome editing of <i>Schistosoma mansoni</i> acetylcholinesterase. FASEB Journal, 2021, 35, e21205.	0.5	21
24	Therapeutic inhibition of miR-802 protects against obesity through AMPK-mediated regulation of hepatic lipid metabolism. Theranostics, 2021, 11, 1079-1099.	10.0	20
25	Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. International Journal of Molecular Sciences, 2022, 23, 2255.	4.1	20
26	The Tao survivorship of schistosomes: implications for schistosomiasis control. International Journal for Parasitology, 2016, 46, 453-463.	3.1	19
27	Functional characterisation of Schistosoma japonicum acetylcholinesterase. Parasites and Vectors, 2016, 9, 328.	2.5	18
28	SHORT REPORT: ECHINOCOCCUS GRANULOSUS FROM XINJIANG, PR CHINA: cDNAS ENCODING THE EG95 VACCINE ANTIGEN ARE EXPRESSED IN DIFFERENT LIFE CYCLE STAGES AND ARE CONSERVED IN THE ONCOSPHERE. American Journal of Tropical Medicine and Hygiene, 2003, 68, 40-43.	1.4	18
29	A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasites and Vectors, 2017, 10, 19.	2.5	16
30	Identification and functional characterisation of a Schistosoma japonicum insulin-like peptide. Parasites and Vectors, 2017, 10, 181.	2.5	15
31	Field Testing Integrated Interventions for Schistosomiasis Elimination in the People's Republic of China: Outcomes of a Multifactorial Cluster-Randomized Controlled Trial. Frontiers in Immunology, 2019, 10, 645.	4.8	15
32	CRISPR/Cas9: A new tool for the study and control of helminth parasites. BioEssays, 2021, 43, e2000185.	2.5	15
33	A gene family from Echinococcus granulosus differentially expressed in mature adult worms. Molecular and Biochemical Parasitology, 2003, 126, 25-33.	1.1	13
34	Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathogens, 2022, 18, e1010288.	4.7	13
35	Gaining biological perspectives from schistosome genomes. Molecular and Biochemical Parasitology, 2014, 196, 21-28.	1.1	12
36	Acetylcholinesterase and Nicotinic Acetylcholine Receptors in Schistosomes and Other Parasitic Helminths. Molecules, 2017, 22, 1550.	3.8	12

#	Article	IF	Citations
37	Protective Immune Responses Generated in a Murine Model Following Immunization with Recombinant Schistosoma japonicum Insulin Receptor. International Journal of Molecular Sciences, 2018, 19, 3088.	4.1	12
38	Gene Expression in Developmental Stages of Schistosoma japonicum Provides Further Insight into the Importance of the Schistosome Insulin-Like Peptide. International Journal of Molecular Sciences, 2019, 20, 1565.	4.1	11
39	Identification of a diagnostic antibody-binding region on the immunogenic protein EpC1 from <i>Echinococcus granulosus</i> and its application in population screening for cystic echinococcosis. Clinical and Experimental Immunology, 2007, 149, 80-86.	2.6	9
40	T cell-mediated immunity in CBA mice during Schistosoma japonicum infection. Experimental Parasitology, 2019, 204, 107725.	1.2	9
41	A Biological and Immunological Characterization of Schistosoma Japonicum Heat Shock Proteins 40 and 90l±. International Journal of Molecular Sciences, 2020, 21, 4034.	4.1	9
42	Innovations and Advances in Schistosome Stem Cell Research. Frontiers in Immunology, 2021, 12, 599014.	4.8	9
43	Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS ONE, 2016, 11, e0159704.	2.5	9
44	Use of kinase inhibitors against schistosomes to improve and broaden praziquantel efficacy. Parasitology, 2020, 147, 1488-1498.	1.5	7
45	Current and prospective chemotherapy options for schistosomiasis. Expert Opinion on Orphan Drugs, 2015, 3, 195-205.	0.8	6
46	Calcium and Ca2+/Calmodulin-dependent kinase II as targets for helminth parasite control. Biochemical Society Transactions, 2018, 46, 1743-1751.	3.4	6
47	Potential of the CRISPRâ€Cas system for improved parasite diagnosis. BioEssays, 2022, 44, e2100286.	2.5	6
48	Adult schistosomes have an epithelial bacterial population distinct from the surrounding mammalian host blood. PLoS ONE, 2022, 17, e0263188.	2.5	5
49	Differences in genomic architecture between two distinct geographical strains of the blood fluke Schistosoma japonicum reveal potential phenotype basis. Molecular and Cellular Probes, 2013, 27, 19-27.	2.1	4
50	Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerging Topics in Life Sciences, 2017, 1, 633-639.	2.6	4
51	Live imaging of collagen deposition during experimental hepatic schistosomiasis and recovery: a view on a dynamic process. Laboratory Investigation, 2019, 99, 231-243.	3.7	4
52	Schistosoma mansoni Fibroblast Growth Factor Receptor A Orchestrates Multiple Functions in Schistosome Biology and in the Host-Parasite Interplay. Frontiers in Immunology, $0,13,13$	4.8	3
53	Signalling pathways and the host-parasite relationship: Putative targets for control interventions against schistosomiasis: Signalling pathways and future anti-schistosome therapies. BioEssays, 2011, 33, 556-556.	2.5	1