Amy E Zanne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660213/publications.pdf

Version: 2024-02-01

58	14,003	30	57
papers	citations	h-index	g-index
66	66	66	15969 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12, 351-366.	3.0	2,219
2	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
3	Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	13.7	1,944
4	Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89-92.	13.7	1,284
5	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
6	Functional traits and the growth–mortality tradeâ€off in tropical trees. Ecology, 2010, 91, 3664-3674.	1.5	788
7	Global patterns in plant height. Journal of Ecology, 2009, 97, 923-932.	1.9	611
8	Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	3.5	466
9	Global metaâ€nnalysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters, 2009, 12, 45-56.	3.0	394
10	Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 2010, 97, 207-215.	0.8	355
11	Plant traits and wood fates across the globe: rotted, burned, or consumed?. Global Change Biology, 2009, 15, 2431-2449.	4.2	318
12	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	4.7	303
13	A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology, 2005, 21, 31-45.	0.5	250
14	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
15	Fungal functional ecology: bringing a traitâ€based approach to plantâ€associated fungi. Biological Reviews, 2020, 95, 409-433.	4.7	171
16	Building a better foundation: improving rootâ€trait measurements to understand and model plant and ecosystem processes. New Phytologist, 2017, 215, 27-37.	3.5	159
17	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	2.7	136
18	Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.	1.9	108

#	Article	IF	Citations
19	A trait-based understanding of wood decomposition by fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11551-11558.	3.3	102
20	How much of the world is woody?. Journal of Ecology, 2014, 102, 1266-1272.	1.9	88
21	What we (don't) know about global plant diversity. Ecography, 2019, 42, 1819-1831.	2.1	79
22	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
23	Potential causes of arrested succession in Kibale National Park, Uganda: growth and mortality of seedlings. African Journal of Ecology, 1999, 37, 81-92.	0.4	71
24	A deteriorating state of affairs: How endogenous and exogenous factors determine plant decay rates. Journal of Ecology, 2015, 103, 1421-1431.	1.9	64
25	Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Botanical Journal of the Linnean Society, 2006, 150, 61-71.	0.8	62
26	Functional biogeography of angiosperms: life at the extremes. New Phytologist, 2018, 218, 1697-1709.	3.5	61
27	Maternal effects shape the seed mycobiome in <i>Quercus petraea</i> . New Phytologist, 2021, 230, 1594-1608.	3.5	47
28	Evolutionary and ecological correlates of early seedling morphology in East African trees and shrubs. American Journal of Botany, 2005, 92, 972-978.	0.8	45
29	Plant functional traits – linkages among stem anatomy, plant performance and life history. New Phytologist, 2010, 185, 348-351.	3.5	36
30	Sapwood capacitance is greater in evergreen sclerophyll species growing in high compared to lowâ€rainfall environments. Functional Ecology, 2014, 28, 734-744.	1.7	34
31	Accurate forest projections require longâ€ŧerm wood decay experiments because plant trait effects change through time. Global Change Biology, 2020, 26, 864-875.	4.2	34
32	When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS ONE, 2018, 13, e0196712.	1.1	33
33	Dissecting the Effects of Diameter on Wood Decay Emphasizes the Importance of Cross-Stem Conductivity in Fraxinus americana. Ecosystems, 2018, 21, 85-97.	1.6	27
34	Selective logging: does the imprint remain on tree structure and composition after 45 years?., 2015, 3, cov012.		26
35	Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood. American Journal of Botany, 2017, 104, 1464-1473.	0.8	26
36	Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecology, 2018, 43, 257-267.	0.7	26

#	Article	IF	CITATIONS
37	Does Weeding Promote Regeneration of an Indigenous Tree Community in Felled Pine Plantations in Uganda?. Restoration Ecology, 2002, 10, 408-415.	1.4	25
38	Selective logging: Do rates of forest turnover in stems, species composition and functional traits decrease with time since disturbance? – A 45year perspective. Forest Ecology and Management, 2015, 357, 10-21.	1.4	24
39	Radial variation in wood specific gravity of tropical tree species differing in growth–mortality strategies. American Journal of Botany, 2014, 101, 803-811.	0.8	23
40	On research priorities to advance understanding of the safety–efficiency tradeoff in xylem. New Phytologist, 2016, 211, 1156-1158.	3.5	21
41	Whether in life or in death: fresh perspectives on how plants affect biogeochemical cycling. Journal of Ecology, 2015, 103, 1367-1371.	1.9	19
42	Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology, 2019, 100, e02790.	1.5	18
43	Progressive, idiosyncratic changes in wood hardness during decay: Implications for dead wood inventory and cycling. Forest Ecology and Management, 2014, 323, 1-9.	1.4	16
44	15N partitioning in tomato: vascular constraints versus tissue demand. Functional Plant Biology, 2006, 33, 457.	1.1	15
45	Fragmentation and Alteration of Seed Dispersal Processes: An Initial Evaluation of Dung Beetles, Seed Fate, and Seedling Diversity 1. Biotropica, 2003, 35, 382.	0.8	14
46	Wood construction more strongly shapes deadwood microbial communities than spatial location over 5 years of decay. Environmental Microbiology, 2020, 22, 4702-4717.	1.8	14
47	Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Functional Ecology, 2021, 35, 835-846.	1.7	12
48	A 10-year evaluation of the functional basis for regeneration habitat preference of trees in an African evergreen forest. Forest Ecology and Management, 2008, 255, 3790-3796.	1.4	10
49	Specific leaf area: a predictive model using dried samples. Australian Journal of Botany, 2013, 61, 350.	0.3	10
50	Finding fungal ecological strategies: Is recycling an option?. Fungal Ecology, 2020, 46, 100902.	0.7	8
51	Direct estimates of downslope deadwood movement over 30 years in a temperature forest illustrate impacts of treefall on forest ecosystem dynamics. Canadian Journal of Forest Research, 2016, 46, 351-361.	0.8	7
52	Comparison of decay rates between native and non-native wood species in invaded forests of the southeastern U.S.: a rapid assessment. Biological Invasions, 2020, 22, 2619-2632.	1.2	7
53	Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization. PLoS ONE, 2016, 11, e0163002.	1.1	6
54	Protecting terrestrial mammal communities: potential role of pine plantations. African Journal of Ecology, 2001, 39, 399-401.	0.4	4

#	Article	IF	CITATION
55	The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of preâ€adapted clades?. New Phytologist, 2021, 232, 2506-2519.	3.5	4
56	Zanne et al. reply. Nature, 2015, 521, E6-E7.	13.7	3
57	Extraction and Purification of DNA from Wood at Various Stages of Decay for Metabarcoding of Wood-Associated Fungi. Methods in Molecular Biology, 2021, 2232, 113-122.	0.4	2
58	Initial wood trait variation overwhelms endophyte community effects for explaining decay trajectories. Functional Ecology, 2022, 36, 1243-1257.	1.7	2