
Jennifer T Coull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602076/publications.pdf Version: 2024-02-01

IENNIEED T COULL

#	Article	IF	CITATIONS
1	As time goes by: Space-time compatibility effects in word recognition Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 304-319.	0.7	6
2	The distinction between temporal order and duration processing, and implications for schizophrenia. , 2022, 1, 257-271.		7
3	Evidence for visual temporal order processing below the threshold for conscious perception. Cognition, 2021, 207, 104528.	1.1	5
4	Dopamine Precursor Depletion in Healthy Volunteers Impairs Processing of Duration but Not Temporal Order. Journal of Cognitive Neuroscience, 2021, 33, 946-963.	1.1	7
5	Time for Action: Neural Basis of the Costs and Benefits of Temporal Predictability for Competing Response Choices. Journal of Cognitive Neuroscience, 2021, , 1-17.	1.1	3
6	Mechanisms of Impulsive Responding to Temporally Predictable Events as Revealed by Electromyography. Neuroscience, 2020, 428, 13-22.	1.1	7
7	Having your cake and eating it: Faster responses with reduced muscular activation while learning a temporal interval. Neuroscience, 2019, 410, 68-75.	1.1	3
8	The beneficial effect of synchronized action on motor and perceptual timing in children. Developmental Science, 2019, 22, e12821.	1.3	7
9	Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cerebral Cortex, 2019, 29, 397-409.	1.6	83
10	Explicit and implicit timing in aging. Acta Psychologica, 2019, 193, 180-189.	0.7	16
11	Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing. Social Cognitive and Affective Neuroscience, 2018, 13, 381-390.	1.5	17
12	28.3 MINIMAL SELF IN SCHIZOPHRENIA: THE TIME PERSPECTIVE. Schizophrenia Bulletin, 2018, 44, S47-S47.	2.3	1
13	A Mental Timeline for Duration From the Age of 5 Years Old. Frontiers in Psychology, 2018, 9, 1155.	1.1	8
14	Explicit Understanding of Duration Develops Implicitly through Action. Trends in Cognitive Sciences, 2018, 22, 923-937.	4.0	45
15	Predictive timing disturbance is a precise marker of schizophrenia. Schizophrenia Research: Cognition, 2018, 12, 42-49.	0.7	17
16	The costs and benefits of temporal predictability: impaired inhibition of prepotent responses accompanies increased activation of task-relevant responses. Cognition, 2018, 179, 102-110.	1.1	13
17	Minimal Self and Timing Disorders in Schizophrenia: A Case Report. Frontiers in Human Neuroscience, 2018, 12, 132.	1.0	16
18	TRF1: It Was the Best of Time(s)…. Timing and Time Perception, 2018, 6, 231-414.	0.4	1

#	Article	IF	CITATIONS
19	Fragile temporal prediction in patients with schizophrenia is related to minimal self disorders. Scientific Reports, 2017, 7, 8278.	1.6	35
20	The spatial representation of time can be flexibly oriented in the frontal or lateral planes from an early age Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 832-845.	0.7	5
21	Dissociating Bottom-Up and Top-Down Mechanisms in the Cortico-Limbic System during Emotion Processing. Cerebral Cortex, 2016, 26, 144-155.	1.6	105
22	Isochronous Sequential Presentation Helps Children Orient Their Attention in Time. Frontiers in Psychology, 2016, 7, 1417.	1.1	10
23	Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: Dissociating prior from posterior temporal probabilities with fMRI. NeuroImage, 2016, 141, 40-51.	2.1	56
24	Distinct developmental trajectories for explicit and implicit timing. Journal of Experimental Child Psychology, 2016, 150, 141-154.	0.7	47
25	When to act, or not to act: that's the SMA's question. Current Opinion in Behavioral Sciences, 2016, 8, 14-21.	2.0	58
26	Effect of trait anxiety on prefrontal control mechanisms during emotional conflict. Human Brain Mapping, 2015, 36, 2207-2214.	1.9	28
27	SMA Selectively Codes the Active Accumulation of Temporal, Not Spatial, Magnitude. Journal of Cognitive Neuroscience, 2015, 27, 2281-2298.	1.1	53
28	A Frontostriatal Circuit for Timing the Duration of Events. , 2015, , 565-570.		2
29	Directing Attention in Time as a Function of Temporal Expectation. , 2015, , 687-693.		1
30	Children Can Implicitly, but Not Voluntarily, Direct Attention in Time. PLoS ONE, 2015, 10, e0123625.	1.1	23
31	The Developmental Emergence of the Mental Time-Line: Spatial and Numerical Distortion of Time Judgement. PLoS ONE, 2015, 10, e0130465.	1.1	26
32	Metrical Rhythm Implicitly Orients Attention in Time as Indexed by Improved Target Detection and Left Inferior Parietal Activation. Journal of Cognitive Neuroscience, 2014, 26, 593-605.	1.1	86
33	Increasing Activity in Left Inferior Parietal Cortex and Right Prefrontal Cortex with Increasing Temporal Predictability: An fMRI Study of the Hazard Function. Procedia, Social and Behavioral Sciences, 2014, 126, 41-44.	0.5	2
34	Getting the Timing Right: Experimental Protocols for Investigating Time with Functional Neuroimaging and Psychopharmacology. Advances in Experimental Medicine and Biology, 2014, 829, 237-264.	0.8	10
35	Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia, 2013, 51, 309-319.	0.7	87
36	Dopaminergic Modulation of Motor Timing in Healthy Volunteers Differs as a Function of Baseline DA Precursor Availability. Timing and Time Perception, 2013, 1, 77-98.	0.4	14

#	Article	IF	CITATIONS
37	Dopamine Precursor Depletion Impairs Timing in Healthy Volunteers by Attenuating Activity in Putamen and Supplementary Motor Area. Journal of Neuroscience, 2012, 32, 16704-16715.	1.7	101
38	Great expectations: Temporal expectation modulates perceptual processing speed Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1183-1191.	0.7	113
39	Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. NeuroImage, 2011, 54, 1221-1230.	2.1	49
40	Neuroanatomical and Neurochemical Substrates of Timing. Neuropsychopharmacology, 2011, 36, 3-25.	2.8	649
41	Behavioural Dissociation between Exogenous and Endogenous Temporal Orienting of Attention. PLoS ONE, 2011, 6, e14620.	1.1	117
42	Ketamine perturbs perception of the flow of time in healthy volunteers. Psychopharmacology, 2011, 218, 543-556.	1.5	44
43	Prompt but inefficient: nicotine differentially modulates discrete components of attention. Psychopharmacology, 2011, 218, 667-680.	1.5	84
44	Orienting Attention in Time Activates Left Intraparietal Sulcus for Both Perceptual and Motor Task Goals. Journal of Cognitive Neuroscience, 2011, 23, 3318-3330.	1.1	96
45	Implicit, Predictive Timing Draws upon the Same Scalar Representation of Time as Explicit Timing. PLoS ONE, 2011, 6, e18203.	1.1	58
46	Discrete Neuroanatomical Substrates for Generating and Updating Temporal Expectations. , 2011, , 87-101.		11
47	Attention and Time. , 2010, , .		69
48	Neural substrates of temporal attentional orienting. , 2010, , 429-442.		6
49	Neural Substrates of Mounting Temporal Expectation. PLoS Biology, 2009, 7, e1000166.	2.6	87
50	Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 2008, 18, 137-144.	2.0	449
51	Timing, Storage, and Comparison of Stimulus Duration Engage Discrete Anatomical Components of a Perceptual Timing Network. Journal of Cognitive Neuroscience, 2008, 20, 2185-2197.	1.1	131
52	Using Time-To-Contact information to assess potential collision modulates both visual and temporal prediction networks. Frontiers in Human Neuroscience, 2008, 2, 10.	1.0	56
53	The hazards of time. Current Opinion in Neurobiology, 2007, 17, 465-470.	2.0	479
54	The supplementary motor area in motor and perceptual time processing: fMRI studies. Cognitive Processing, 2006, 7, 89-94.	0.7	125

#	Article	IF	CITATIONS
55	Psychopharmacology of Human Attention. , 2005, , 50-56.		3
56	Functional Anatomy of the Attentional Modulation of Time Estimation. Science, 2004, 303, 1506-1508.	6.0	572
57	Functional Imaging of Cognitive Psychopharmacology. , 2004, , 303-327.		1
58	fMRI studies of temporal attention: allocating attention within, or towards, time. Cognitive Brain Research, 2004, 21, 216-226.	3.3	169
59	Orienting Attention to Locations in Perceptual Versus Mental Representations. Journal of Cognitive Neuroscience, 2004, 16, 363-373.	1.1	264
60	Attentional effects of noradrenaline vary with arousal level: selective activation of thalamic pulvinar in humans. NeuroImage, 2004, 22, 315-322.	2.1	134
61	Distinct neural substrates for visual search amongst spatial versus temporal distractors. Cognitive Brain Research, 2003, 17, 368-379.	3.3	69
62	Brain Activations during Visual Search: Contributions of Search Efficiency versus Feature Binding. NeuroImage, 2003, 18, 91-103.	2.1	143
63	Modulation of attention by noradrenergic alpha2-agents varies according to arousal level. Drug News and Perspectives, 2001, 14, 5.	1.9	14
64	Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 2000, 38, 808-819.	0.7	414
65	Orienting attention in time. Brain, 1999, 122, 1507-1518.	3.7	340
66	Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 1999, 2, 11-12.	7.1	245
67	Dissociating neuromodulatory effects of diazepam on episodic memory encoding and executive function. Psychopharmacology, 1999, 145, 213-222.	1.5	39
68	Noradrenergically Mediated Plasticity in a Human Attentional Neuronal Network. Neurolmage, 1999, 10, 705-715.	2.1	150
69	The Predictive Value of Changes in Effective Connectivity for Human Learning. Science, 1999, 283, 1538-1541.	6.0	407
70	Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia, 1998, 36, 1325-1334.	0.7	206
71	Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 1998, 55, 343-361.	2.8	778
72	Differential Activation of Right Superior Parietal Cortex and Intraparietal Sulcus by Spatial and Nonspatial Attention. NeuroImage, 1998, 8, 176-187.	2.1	167

#	Article	IF	CITATIONS
73	Cerebral activation in malformations of cortical development. Brain, 1998, 121, 1295-1304.	3.7	69
74	Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. Journal of Neuroscience, 1998, 18, 7426-7435.	1.7	1,122
75	Functional neuroimaging: current developments in PET, fMRI and electrophysiology. Trends in Cognitive Sciences, 1997, 1, 161-162.	4.0	0
76	The Neural Correlates of the Noradrenergic Modulation of Human Attention, Arousal and Learning. European Journal of Neuroscience, 1997, 9, 589-598.	1.2	96
77	A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia, 1996, 34, 1085-1095.	0.7	513
78	Theα 2 antagonist idazoxan remediates certain attentional and executive dysfunction in patients with dementia of frontal type. Psychopharmacology, 1996, 123, 239-249.	1.5	105
79	Differential effects of clonidine, haloperidol, diazepam and tryptophan depletion on focused attention and attentional search. Psychopharmacology, 1995, 121, 222-230.	1.5	87
80	Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology, 1995, 120, 311-321.	1.5	124
81	Clonidine and diazepam have differential effects on tests of attention and learning. Psychopharmacology, 1995, 120, 322-332.	1.5	112
82	Clonidine-induced changes in the spectral distribution of heart rate variability correlate with performance on a test of sustained attention. Journal of Psychopharmacology, 1994, 8, 1-7.	2.0	11
83	Nicotine and tetrahydroaminoacradine: Evidence for improved attention in patients with dementia of the Alzheimer type. Drug Development Research, 1994, 31, 80-88.	1.4	56
84	Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology, 1994, 33, 575-588.	2.0	291
85	Pharmacological Manipulations of the ??2-Noradrenergic System. Drugs and Aging, 1994, 5, 116-126.	1.3	120