Rikuo Ochi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602013/publications.pdf

Version: 2024-02-01

		1478505	1474206	
17	149	6	9	
papers	citations	h-index	g-index	
17	17	17	218	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Glucose-6-phosphate dehydrogenase increases Ca ²⁺ currents by interacting with Ca _v 1.2 and reducing intrinsic inactivation of the L-type calcium channel. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H144-H158.	3.2	6
2	Dehydroepiandrosterone inhibits <i>I</i> _{Ca,L} and its window current in voltage-dependent and -independent mechanisms in arterial smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1602-H1613.	3.2	7
3	Inhibition of <i>I</i> i> _{Ca,L} by DHEA in Aortic Smooth Muscle Cells: Voltageâ€dependency, Modulation by GPCR Signaling and Inhibition of Glucoseâ€6â€phosphate Dehydrogenase. FASEB Journal, 2018, 32, .	0.5	O
4	Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca ²⁺ current in A7r5 aortic smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1118-H1128.	3.2	15
5	Rotenone, Mitochondrial Complex I Inhibitor, Augments and Hydrogen Peroxide Inhibits Lâ€type Calcium Current in Arterial Smooth Muscle Cells. FASEB Journal, 2015, 29, 844.10.	0.5	1
6	Poly(Ethylene Glycol)-Cholesterol Inhibits L-Type Ca2+ Channel Currents and Augments Voltage-Dependent Inactivation in A7r5 Cells. PLoS ONE, 2014, 9, e107049.	2.5	6
7	Hydrogen peroxideâ€induced inhibition of Lâ€type Ca channel current in A7r5 cells: Effect of ebselen, dithiothreitol and Nâ€acetylcysteine. FASEB Journal, 2013, 27, 913.52.	0.5	О
8	Lâ€ŧype Ca2+ channel current from onâ€cell patch is augmented by H2O2 in rat aortic smooth muscle–derived A7r5 cells. FASEB Journal, 2012, 26, 695.4.	0.5	0
9	Glucose-6-Phosphate Dehydrogenase Is a Regulator of Vascular Smooth Muscle Contraction. Antioxidants and Redox Signaling, 2011, 14, 543-558.	5.4	32
10	Apocynin inhibits and its removal augments Lâ€type Ca2+ currents in coronary artery smooth muscle cells and ventricular myocytes. FASEB Journal, 2010, 24, 595.7.	0.5	0
11	Loss of function of CaV1.2 in cultured bovine coronary artery smooth muscle cells. FASEB Journal, 2009, 23, 1018.9.	0.5	0
12	Activation of Glucoseâ€6â€Phosphate Dehydrogenase by Depolarization of Membrane Potential Mediates Vascular Smooth Muscle Contraction. FASEB Journal, 2009, 23, 627.11.	0.5	0
13	Cholesterol depletion modulates basal L-type Ca ²⁺ current and abolishes its β-adrenergic enhancement in ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H285-H292.	3.2	34
14	Cholesterol regulates βâ€adrenergic enhancement of Lâ€type Ca current in rat ventricular myocytes. FASEB Journal, 2008, 22, 1201.2.	0.5	0
15	Epiandrosterone activates BKCa channel in bovine coronary artery smooth muscle cells. FASEB Journal, 2008, 22, 744.6.	0.5	O
16	Ryanodine Receptor - A Novel Therapeutic Target in Heart Disease. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 110-118.	1.5	13
17	Epiandrosterone, a Metabolite of Testosterone Precursor, Blocks L-type Calcium Channels of Ventricular Myocytes and Inhibits Myocardial Contractility. Journal of Molecular and Cellular Cardiology, 2002, 34, 679-688.	1.9	35