Sungmin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6601908/publications.pdf

Version: 2024-02-01

686830 676716 63 600 13 22 h-index citations g-index papers 65 65 65 497 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Automatic Structure Analysis and Objective Evaluation of Woven Fabric Using Image Analysis. Textile Reseach Journal, 2001, 71, 261-270.	1.1	55
2	Basic garment pattern generation using geometric modeling method. International Journal of Clothing Science and Technology, 2007, 19, 7-17.	0.5	52
3	Parametric body model generation for garment drape simulation. Fibers and Polymers, 2004, 5, 12-18.	1.1	42
4	Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance. Scientific Reports, 2015, 5, 12710.	1.6	40
5	Effective Heat Dissipation from Color-Converting Plates in High-Power White Light Emitting Diodes by Transparent Graphene Wrapping. ACS Nano, 2016, 10, 238-245.	7.3	39
6	New Objective Evaluation of Fabric Smoothness Appearance. Textile Reseach Journal, 2001, 71, 446-453.	1.1	37
7	Objective Evaluation of Fabric Pilling Using Stereovision. Textile Reseach Journal, 2004, 74, 1013-1017.	1.1	32
8	Porous copper–graphene heterostructures for cooling of electronic devices. Nanoscale, 2017, 9, 7565-7569.	2.8	17
9	Evaluation of fabric pilling using hybrid imaging methods. Fibers and Polymers, 2006, 7, 57-61.	1.1	16
10	Development of a color matching algorithm for digital transfer textile printing using an artificial neural network and multiple regression. Textile Reseach Journal, 2015, 85, 1076-1082.	1.1	16
11	The effect of nanoparticle packing on capacitive electrode performance. Nanoscale, 2016, 8, 11940-11948.	2.8	16
12	Development of an objective fabric pilling evaluation method. I. Characterization of pilling using image analysis. Fibers and Polymers, 2013, 14, 832-837.	1.1	15
13	Facile Functionalization via Plasma-Enhanced Chemical Vapor Deposition for the Effective Filtration of Oily Aerosol. Polymers, 2019, 11, 1490.	2.0	14
14	Analysis of woven fabric structure using image analysis and artificial intelligence. Fibers and Polymers, 2011, 12, 1062-1068.	1.1	12
15	Development of low cost three-dimensional body scanner using depth perception camera. International Journal of Clothing Science and Technology, 2017, 29, 857-867.	0.5	9
16	Development of a script-based versatile three-dimensional body measurement system. International Journal of Clothing Science and Technology, 2018, 30, 598-609.	0.5	9
17	Wavelength Interrogation System for Quasi-Distributed Fiber Bragg Grating Temperature Sensors Based on a 50-GHz Array Waveguide Grating. IEEE Sensors Journal, 2019, 19, 2598-2604.	2.4	9
18	Analysis of human body surface shape using parametric design method. International Journal of Clothing Science and Technology, 2015, 27, 434-446.	0.5	8

#	Article	IF	Citations
19	Simulation of maypole braiding process with multi-layer interlocking yarns. Journal of the Textile Institute, 2017, 108, 579-585.	1.0	8
20	Fabrication of 3D printed garments using flat patterns and motifs. International Journal of Clothing Science and Technology, 2019, 31, 653-662.	0.5	8
21	3D Anthropometric Analysis of Women's Aging Bodies: Upper Body Shape and Posture Changes. Fashion Practice, 2022, 14, 26-48.	0.4	8
22	Fast garment drape simulation using geometrically constrained particle system. Fibers and Polymers, 2003, 4, 169-175.	1.1	7
23	Development of a platform for realistic garment drape simulation. Fibers and Polymers, 2006, 7, 436-441.	1.1	7
24	Automatic basic garment pattern generation using threeâ€dimensional measurements. International Journal of Clothing Science and Technology, 2010, 22, 101-113.	0.5	7
25	Simulation of bespoke garments using parametrically designed patterns. International Journal of Clothing Science and Technology, 2012, 24, 350-362.	0.5	7
26	Development of similarity evaluation method between virtual and actual clothing. International Journal of Clothing Science and Technology, 2017, 29, 743-750.	0.5	7
27	Development of a computer-aided design software for smart garments. International Journal of Clothing Science and Technology, 2017, 29, 845-856.	0.5	7
28	Development of an objective fabric pilling evaluation method. II. Fabric pilling grading using artificial neural network. Fibers and Polymers, 2013, 14, 2157-2162.	1.1	6
29	Mass production of digital garments using multiâ€option data structure. International Journal of Clothing Science and Technology, 2012, 24, 89-101.	0.5	5
30	Garment pattern nesting using image analysis and three-dimensional simulation. Fibers and Polymers, 2013, 14, 860-865.	1.1	5
31	Three-dimensional garment pattern design using progressive mesh cutting algorithm. International Journal of Clothing Science and Technology, 2019, 31, 339-349.	0.5	5
32	Determination of fabric physical properties for the simulation of Cusick drapemeter. Fibers and Polymers, 2011, 12, 132-136.	1.1	4
33	Adaptive modeling method for 3-D printing with various polymer materials. Fibers and Polymers, 2016, 17, 977-983.	1.1	4
34	Development of helmet mold design system using 3D anthropometric analysis. International Journal of Clothing Science and Technology, 2019, 32, 446-456.	0.5	4
35	Categorization of lower body shapes of abdominal obese men using a script-based 3D body measurement software. Fashion and Textiles, 2020, 7, .	1.3	4
36	Development of parametric garment pattern design system. International Journal of Clothing Science and Technology, 2021, 33, 724-739.	0.5	4

#	Article	IF	CITATIONS
37	Surface Wettability Prediction Using Image Analysis and an Artificial Neural Network. Langmuir, 2022, 38, 7208-7217.	1.6	4
38	Automatic custom pattern generation using width-height independent grading. International Journal of Clothing Science and Technology, 2015, 27, 908-921.	0.5	3
39	An Effective Research Method to Predict Human Body Type Using an Artificial Neural Network and a Discriminant Analysis. Fibers and Polymers, 2018, 19, 1781-1789.	1.1	3
40	Development of a 3D printing method for the textile hybrid structure. International Journal of Clothing Science and Technology, 2022, 34, 262-272.	0.5	3
41	Study on the Integration of Fabric Pilling Generation and Evaluation System. Textile Science and Engineering, 2016, 53, 360-365.	0.4	3
42	Development of a Sewing Machine Controller for Seam Pucker Reduction using Online Measurement Feedback System. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	2
43	Effect of Physical Aging on the Bending Recovery of PEEK and PI Films. Fibers and Polymers, 2019, 20, 944-950.	1.1	2
44	Development of a modular garment assembly line simulator. International Journal of Clothing Science and Technology, 2020, 32, 645-659.	0.5	2
45	Feature-based fashion flat sketch design using automatic module alignment algorithm. International Journal of Clothing Science and Technology, 2021, 33, 824-837.	0.5	2
46	A Systematic Review on Smart Manufacturing in the Garment Industry. Fashion & Textile Research Journal, 2020, 22, 660-675.	0.1	2
47	Digital description of the ISO wrinkle replicas using 3D image analysis. Fibers and Polymers, 2009, 10, 539-545.	1.1	1
48	Introduction of normal preserving force into garment drape simulation for stable sewing process. Fibers and Polymers, 2010, 11, 285-290.	1.1	1
49	Development of a Parametric Design Method for Various Woven Fabric Structures. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	0.5	1
50	Development of a versatile controller system for textile machinery. Fibers and Polymers, 2011, 12, 550-555.	1.1	1
51	Development of bulletproof pad design system using 3D body scan data. International Journal of Clothing Science and Technology, 2019, 31, 802-812.	0.5	1
52	Improvement of Bending Recovery of Polyester Film via Physical Aging Treatment. Porrime, 2015, 39, 593.	0.0	1
53	Automated Textile Circuit Generation using Machine Vision and Embroidery Technique. Textile Reseach Journal, 0, , 004051752210750.	1.1	1
54	Development of fashion recommendation system using collaborative deep learning. International Journal of Clothing Science and Technology, 2022, ahead-of-print, .	0.5	1

#	Article	IF	CITATIONS
55	Improvement in drying performance through sample movement change in tumble dryers. Textile Reseach Journal, 2022, 92, 4814-4833.	1.1	1
56	Objective evaluation of antimicrobial property of textile materials using image analysis. Fibers and Polymers, 2011, 12, 1048-1053.	1.1	0
57	New production method for a plain weave figured fabric. Fibers and Polymers, 2011, 12, 137-141.	1.1	O
58	Optimization of Digital Textile Printing Process using Taguchi Method. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	0.5	0
59	Preparation and characterisation of field-responsive nanofibres by coaxial electrospinning. International Journal of Nanotechnology, 2016, 13, 253.	0.1	O
60	Optimization of Digital Transfer Textile Printing Process using Multi-Objective Function Analysis. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	0
61	Development of an interactive shirt for self-directed motor learning. International Journal of Clothing Science and Technology, 2020, 32, 402-411.	0.5	O
62	Development of smart insole for cycle time measurement in sewing process. Fashion and Textiles, 2021, 8, .	1.3	0
63	Automatic Measurement of Yarn Crimp Using Image Analysis. Journal of Testing and Evaluation, 2014, 42, 291-297.	0.4	O