
Georg A Holländer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6601847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P63 targeted deletion under the FOXN1 promoter disrupts pre-and post-natal thymus development, function and maintenance as well as induces severe hair loss. PLoS ONE, 2022, 17, e0261770.	2.5	5
2	Developmental dynamics of the neural crest–mesenchymal axis in creating the thymic microenvironment. Science Advances, 2022, 8, eabm9844.	10.3	6
3	RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature, 2021, 589, 442-447.	27.8	52
4	High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Science Advances, 2021, 7, .	10.3	59
5	Introduction: thymus development and function in health and disease. Seminars in Immunopathology, 2021, 43, 1-3.	6.1	0
6	Thymus Extracellular Matrixâ€Derived Scaffolds Support Graftâ€Resident Thymopoiesis and Longâ€Term In Vitro Culture of Adult Thymic Epithelial Cells. Advanced Functional Materials, 2021, 31, 2010747.	14.9	16
7	The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Communications Biology, 2021, 4, 681.	4.4	6
8	Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nature Communications, 2021, 12, 3933.	12.8	7
9	Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in	11.9	6
10	Expanding the Nude SCID/CID Phenotype Associated with FOXN1 Homozygous, Compound Heterozygous, or Heterozygous Mutations. Journal of Clinical Immunology, 2021, 41, 756-768.	3.8	13
11	RBFOX splicing factors contribute to a broad but selective recapitulation of peripheral tissue splicing patterns in the thymus. Genome Research, 2021, 31, 2022-2034.	5.5	2
12	FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. Science Advances, 2021, 7, eabj9247.	10.3	10
13	The crystal structure of human forkhead box N1 in complex with DNA reveals the structural basis for forkhead box family specificity. Journal of Biological Chemistry, 2020, 295, 2948-2958.	3.4	16
14	Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO Journal, 2020, 39, e101828.	7.8	63
15	Ageing compromises mouse thymus function and remodels epithelial cell differentiation. ELife, 2020, 9, .	6.0	92
16	Comment on "ldentification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of <i>Foxn1</i> in Thymic Epithelial Cells― Journal of Immunology, 2019, 203, 2355-2355.	0.8	4
17	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	3.3	31
18	CAR-T Cells: A Systematic Review and Mixed Methods Analysis of the Clinical Trial Landscape. Molecular Therapy, 2018, 26, 342-353.	8.2	95

Georg A Holläder

#	Article	IF	CITATIONS
19	The role of thymic tolerance in CNS autoimmune disease. Nature Reviews Neurology, 2018, 14, 723-734.	10.1	25
20	Comprehensively Profiling the Chromatin Architecture of Tissue Restricted Antigen Expression in Thymic Epithelial Cells Over Development. Frontiers in Immunology, 2018, 9, 2120.	4.8	17
21	Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. Journal of Immunology, 2018, 201, 3320-3328.	0.8	4
22	Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis. Journal of Immunology, 2018, 201, 524-532.	0.8	15
23	Despite high levels of expression in thymic epithelial cells, miR-181a1 and miR-181b1 are not required for thymic development. PLoS ONE, 2018, 13, e0198871.	2.5	3
24	Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Frontiers in Immunology, 2018, 9, 2902.	4.8	38
25	A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood, 2017, 130, 2504-2515.	1.4	40
26	In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering. Nature Communications, 2017, 8, 2109.	12.8	11
27	Cadherin 17 mutation associated with leaky severe combined immune deficiency is corrected by HSCT. Blood Advances, 2017, 1, 2083-2087.	5.2	3
28	Requirement of Stat3 Signaling in the Postnatal Development of Thymic Medullary Epithelial Cells. PLoS Genetics, 2016, 12, e1005776.	3.5	33
29	Dynamic spatioâ€ŧemporal contribution of single β5t+ cortical epithelial precursors to the thymus medulla. European Journal of Immunology, 2016, 46, 846-856.	2.9	56
30	Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nature Immunology, 2016, 17, 1206-1215.	14.5	142
31	Regulatory barriers to the advancement of precision medicine. Expert Review of Precision Medicine and Drug Development, 2016, 1, 319-329.	0.7	7
32	Sonic Hedgehog regulates thymic epithelial cell differentiation. Journal of Autoimmunity, 2016, 68, 86-97.	6.5	32
33	Open Access Could Transform Drug Discovery: A Case Study of JQ1. Expert Opinion on Drug Discovery, 2016, 11, 321-332.	5.0	28
34	CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunology, 2016, 9, 401-413.	6.0	121
35	Alloreactive Natural Killer Cells Initiate a Unique Cellular and Molecular Pathway That Greatly Accelerates Immune Reconstitution after Allogeneic Bone Marrow Transplantation. Blood, 2016, 128, 548-548.	1.4	0
36	A subpopulation of CD103 ^{pos} ICOS ^{pos} Treg cells occurs at high frequency in lymphopenic mice and represents a lymph node specific differentiation stage. European Journal of Immunology, 2015, 45, 1760-1771.	2.9	13

Georg A HollÃnder

#	Article	IF	CITATIONS
37	Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of autoreactive CD4+ T cells in acute GVHD. Blood, 2015, 125, 2720-2723.	1.4	69
38	Evolution of the immune system in humans from infancy to old age. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143085.	2.6	1,054
39	Adult Thymic Medullary Epithelium Is Maintained and Regenerated by Lineage-Restricted Cells Rather Than Bipotent Progenitors. Cell Reports, 2015, 13, 1432-1443.	6.4	69
40	Violation of the 12/23 rule of genomic V(D)J recombination is common in lymphocytes. Genome Research, 2015, 25, 226-234.	5.5	2
41	21 st Century Cures Act: An Act of Cure or Diagnosis?. Rejuvenation Research, 2015, 18, 295-298.	1.8	5
42	Population and single-cell genomics reveal the <i>Aire</i> dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Research, 2014, 24, 1918-1931.	5.5	308
43	Essential role for autophagy during invariant NKT cell development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5678-87.	7.1	95
44	A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nature Immunology, 2014, 15, 554-561.	14.5	60
45	Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. Journal of Experimental Medicine, 2014, 211, 929-942.	8.5	95
46	TRAF3 enforces the requirement for T cell cross-talk in thymic medullary epithelial development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21107-21112.	7.1	30
47	IL-7 Produced by Thymic Epithelial Cells Plays a Major Role in the Development of Thymocytes and TCRγÎ′+ Intraepithelial Lymphocytes. Journal of Immunology, 2013, 190, 6173-6179.	0.8	63
48	TGF-β type II receptor expression in thymic epithelial cells inhibits the development of Hassall's corpuscles in mice. International Immunology, 2013, 25, 633-642.	4.0	17
49	Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9885-9890.	7.1	135
50	MicroRNAs Control the Maintenance of Thymic Epithelia and Their Competence for T Lineage Commitment and Thymocyte Selection. Journal of Immunology, 2012, 189, 3894-3904.	0.8	54
51	GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848.	7.0	94
52	Thymic T-cell development in allogeneic stem cell transplantation. Blood, 2011, 117, 6768-6776.	1.4	184
53	Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. Journal of Experimental Medicine, 2011, 208, 383-394.	8.5	262
54	Flt3 ligand–receptor interaction is important for maintenance of early thymic progenitor numbers in steadyâ€state thymopoiesis. European Journal of Immunology, 2010, 40, 81-90.	2.9	18

Georg A Holläder

#	Article	IF	CITATIONS
55	Short-term inhibition of p53 combined with keratinocyte growth factor improves thymic epithelial cell recovery and enhances T-cell reconstitution after murine bone marrow transplantation. Blood, 2010, 115, 1088-1097.	1.4	66
56	Spatial (Tbata) expression in mature medullary thymic epithelial cells. European Journal of Immunology, 2010, 40, 530-538.	2.9	10
57	Deficiency of the Metalloproteinase-Disintegrin ADAM8 Is Associated with Thymic Hyper-Cellularity. PLoS ONE, 2010, 5, e12766.	2.5	11
58	Phosphatidylinositol 3-Kinase Signaling in Thymocytes: The Need for Stringent Control. Science Signaling, 2010, 3, re5.	3.6	39
59	Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Molecular Immunology, 2010, 47, 1106-1113.	2.2	17
60	Emerging strategies to boost thymic function. Current Opinion in Pharmacology, 2010, 10, 443-453.	3.5	67
61	The role of the thymus in allogeneic hematopoietic stem cell transplantation. Swiss Medical Weekly, 2010, 140, w13051.	1.6	11
62	The Role of the Thymus in Hematopoietic Stem Cell Transplantation. , 2010, , 303-350.		0
63	Stabilized \hat{I}^2 -Catenin in Thymic Epithelial Cells Blocks Thymus Development and Function. Journal of Immunology, 2009, 182, 2997-3007.	0.8	72
64	Learning to be tolerant: how T cells keep out of trouble. Journal of Internal Medicine, 2009, 265, 541-561.	6.0	17
65	Clearing the AIRE: On the Pathophysiological Basis of the Autoimmune Polyendocrinopathy Syndrome Type-1. Endocrinology and Metabolism Clinics of North America, 2009, 38, 273-288.	3.2	35
66	Lymphoid reconstitution following hematopoietic stem cell transplantation. Seminars in Immunopathology, 2008, 30, 369-370.	6.1	4
67	The thymus in GVHD pathophysiology. Best Practice and Research in Clinical Haematology, 2008, 21, 119-128.	1.7	29
68	Autoantigen-Specific Interactions with CD4+ Thymocytes Control Mature Medullary Thymic Epithelial Cell Cellularity. Immunity, 2008, 29, 451-463.	14.3	219
69	Overexpression of Lymphotoxin in T Cells Induces Fulminant Thymic Involution. American Journal of Pathology, 2008, 172, 1555-1570.	3.8	22
70	Delta-like 4 is indispensable in thymic environment specific for T cell development. Journal of Experimental Medicine, 2008, 205, 2507-2513.	8.5	332
71	Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. Journal of Experimental Medicine, 2008, 205, 523-531.	8.5	54
72	Autoimmune Polyendocrine Syndrome Type 1 and NALP5, a Parathyroid Autoantigen. New England Journal of Medicine, 2008, 358, 1018-1028.	27.0	270

Georg A HollÃnder

#	Article	IF	CITATIONS
73	Thymic stromal lymphopoietin is not necessary or sufficient to mediate the thymopoietic effects of keratinocyte growth factor. Blood, 2008, 111, 969-970.	1.4	4
74	Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood, 2008, 111, 5734-5744.	1.4	107
75	Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood, 2007, 109, 2529-2537.	1.4	208
76	Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood, 2007, 109, 3803-3811.	1.4	185
77	Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood, 2007, 109, 4080-4088.	1.4	87
78	Deletion of PKBα/Akt1 Affects Thymic Development. PLoS ONE, 2007, 2, e992.	2.5	26
79	Claudins provide a breath of fresh Aire. Nature Immunology, 2007, 8, 234-236.	14.5	16
80	Rituximab plus CHOP for treatment of diffuse large B-cell lymphoma during second trimester of pregnancy. Lancet Oncology, The, 2006, 7, 693-694.	10.7	104
81	Cellular and molecular events during early thymus development. Immunological Reviews, 2006, 209, 28-46.	6.0	102
82	Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature, 2006, 444, 724-729.	27.8	531
83	Induction of Endogenous Repair Mechanisms by Single-Stranded DNA Oligonucleotide Therapy for Correction of the DNA-PK Mutation in Murine Severe Combined Immune Deficiency Blood, 2006, 108, 454-454.	1.4	0
84	A short primer on early molecular and cellular events in thymus organogenesis and replacement. Swiss Medical Weekly, 2006, 136, 365-9.	1.6	3
85	The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood, 2005, 105, 31-39.	1.4	126
86	Leydig cell injury as a consequence of an acute graft-versus-host reaction. Blood, 2005, 105, 2988-2990.	1.4	18
87	Keratinocyte Growth Factor Increases Thymic Output of Nail̀^ve T-Cells after Total Body Irradiation and Autologous Peripheral Blood Progenitor Cell Transplantation in Rhesus Macaques Blood, 2005, 106, 187-187.	1.4	2
88	On the Relevance of TCR Rearrangement Circles as Molecular Markers for Thymic Output during Experimental Graft-versus-Host Disease. Journal of Immunology, 2004, 172, 7359-7367.	0.8	25
89	Promoter IV of the class II transactivator gene is essential for positive selection of CD4+ T cells. Blood, 2003, 101, 3550-3559.	1.4	34
90	Functional IL-18 Is Produced by Primary Pancreatic Mouse Islets and NIT-1 Beta Cells and Participates in the Progression towards Destructive Insulitis. Hormone Research in Paediatrics, 2002, 57, 94-104.	1.8	28

Georg A Holläder

#	Article	IF	CITATIONS
91	Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood, 2002, 100, 682-691.	1.4	197
92	β cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nature Medicine, 2002, 8, 1414-1420.	30.7	298
93	Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nature Immunology, 2002, 3, 635-642.	14.5	269
94	Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nature Immunology, 2002, 3, 1102-1108.	14.5	248
95	β cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nature Medicine, 2002, 8, 1414-1420.	30.7	113
96	Matrix Metalloproteinase (MMP)-8 and MMP-9 in Cerebrospinal Fluid during Bacterial Meningitis: Association with Blood-Brain Barrier Damage and Neurological Sequelae. Clinical Infectious Diseases, 2000, 31, 80-84.	5.8	228
97	Nitric oxide production and Fas surface expression mediate two independent pathways of cytokine-induced murine beta-cell damage. Diabetes, 2000, 49, 39-47.	0.6	106
98	Normal Thymic Architecture and Negative Selection Are Associated with <i>Aire</i> Expression, the Gene Defective in the Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED). Journal of Immunology, 2000, 165, 1976-1983.	0.8	239
99	Thymic microenvironments, 3-D versus 2-D?. Seminars in Immunology, 1999, 11, 57-64.	5.6	128
100	CONTRIBUTION OF CD40-CD154-MEDIATED COSTIMULATION TO AN ALLORESPONSE IN VIVO1. Transplantation, 1999, 67, 1284-1287.	1.0	16
101	Monoallelic Expression of the Interleukin-2 Locus. Science, 1998, 279, 2118-2121.	12.6	223
102	Development and function of T lymphocytes and natural killer cells after bone marrow transplantation of severely immunodeficient mice. Immunological Reviews, 1997, 157, 53-60.	6.0	28
103	Expression of pro-inflammatory cytokines by TCRαβ+ T and TCRγδ+ T cells in an experimental model of colitis. European Journal of Immunology, 1997, 27, 17-25.	2.9	121
104	Induction of alloantigen-specific tolerance by B cells from CD40-deficient mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4994-4998.	7.1	59
105	Natural killer cell development is blocked in the context of aberrant T lymphocyte oxtogeny. International Immunology, 1996, 8, 939-951.	4.0	31
106	Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature, 1995, 373, 350-353.	27.8	268
107	Selection of peripheral and intestinal T lymphocytes lacking CD3 ζ. International Immunology, 1995, 7, 287-293.	4.0	18
108	Severe colitis in mice with aberrant thymic selection. Immunity, 1995, 3, 27-38.	14.3	186

#	Article	IF	CITATIONS
109	Molecular and biological actions of cyclosporin A and FK506 on T cell development and function. Transfusion Science, 1994, 15, 207-220.	0.6	20
110	DISRUPTION OF T CELL DEVELOPMENT AND REPERTOIRE SELECTION BY CALCINEURIN INHIBITION IN VIVO. Transplantation, 1994, 58, 1037-1043.	1.0	23
111	Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology. Current Opinion in Immunology, 1993, 5, 763-773.	5.5	161