
Kai Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6601805/publications.pdf Version: 2024-02-01

ΚΛΙλλεν

#	Article	IF	CITATIONS
1	Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Materials and Design, 2016, 101, 16-23.	3.3	126
2	Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 42-54.	2.6	58
3	Aging behavior and fatigue crack propagation of high Zn-containing Al-Zn-Mg-Cu alloys with zinc variation. Progress in Natural Science: Materials International, 2017, 27, 217-227.	1.8	18
4	Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al–Zn–Mg–Cu Alloy. Metals and Materials International, 2018, 24, 537-548.	1.8	16
5	Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents. Rare Metals, 2021, 40, 2160-2166.	3.6	8
6	Single-stage aging behaviour and precipitate evolution in a high Zn-containing Al–9.78Zn–2.02Mg–1.76Cu alloy. Materials Science and Technology, 2018, 34, 718-724.	0.8	7
7	Fe-rich particles influenced secondary crack characteristics in an Al-Zn-Mg-Cu alloy extrusion plate with high zinc content. Scripta Materialia, 2020, 186, 259-262.	2.6	7
8	Quantitative relationship between microstructure and tensile properties of Al–Zn–Mg–Cu alloys with various alloying degrees. Journal of Materials Research and Technology, 2022, 18, 5394-5405.	2.6	7
9	Measurement and Theoretical Calculation Confirm the Improvement of T7651 Aging State Influenced Precipitation Characteristics on Fatigue Crack Propagation Resistance in an Al–Zn–Mg–Cu Alloy. Metals and Materials International, 2021, 27, 779-795.	1.8	6
10	Fatigue Crack Growth and Precipitation Characteristics of a High Zn-Containing Al-Zn-Mg-Cu Alloy with Various Typical Aging States. Materials Science Forum, 0, 1026, 19-27.	0.3	2
11	Single Stage Ageing Property and Precipitation Variation of a High-Zinc Al–Zn–Mg–Cu Alloy. , 2018, , 377-384.		0
12	Enlarged Zn Content Improves Fatigue Crack Propagation Resistance of Two Al-Zn-Mg-Cu Alloys with Multiple Aging Tempers. Key Engineering Materials, 0, 921, 15-22.	0.4	0