Fausto Gallucci

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/660132/fausto-gallucci-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

288 69 48 7,237 h-index g-index citations papers 8,489 6.45 6.7 314 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
288	Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: The role of CO2 and CO hydrogenation. <i>Chemical Engineering Journal</i> , 2022 , 435, 134946	14.7	2
287	CO2 capture and activation with a plasma-sorbent system. Chemical Engineering Journal, 2022, 430, 13	29/7/9 ₇	2
286	Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 21220-21230	6.7	O
285	Strategies for Integrated Capture and Conversion of CO from Dilute Flue Gases and the Atmosphere. <i>ChemSusChem</i> , 2021 , 14, 1805-1820	8.3	15
284	Total vapor pressure of hydrophobic deep eutectic solvents: Experiments and modelling. <i>Journal of Molecular Liquids</i> , 2021 , 325, 115227	6	9
283	Non-thermal plasma-assisted capture and conversion of CO2. <i>Chemical Engineering Journal</i> , 2021 , 410, 128335	14.7	10
282	H2 production via ammonia decomposition in a catalytic membrane reactor. <i>Fuel Processing Technology</i> , 2021 , 216, 106772	7.2	23
281	Ce0.9Gd0.1O2-Ebased multi-phase membranes with high CO2-tolerance. <i>Ceramics International</i> , 2021 , 47, 17768-17777	5.1	O
280	Virtual reality in chemical and biochemical engineering education and training. <i>Education for Chemical Engineers</i> , 2021 , 36, 143-153	2.4	17
279	Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 19758-19767	6.7	2
278	Selective CO2-Hydrogenation using a membrane reactor. <i>Chemical Engineering and Processing:</i> Process Intensification, 2021 , 160, 108264	3.7	6
277	Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification. <i>Fuel Processing Technology</i> , 2021 , 213, 106661	7.2	2
276	Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 4917-4935	6.7	22
275	Carbon Nanosheets Synthesis in a Gliding Arc Reactor: On the Reaction Routes and Process Parameters. <i>Plasma Chemistry and Plasma Processing</i> , 2021 , 41, 191-209	3.6	1
274	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. <i>Reviews in Chemical Engineering</i> , 2021 , 37, 363-406	5	13
273	On the use of double-skinned membranes to prevent chemical interaction between membranes and catalysts. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 20240-20244	6.7	2
272	Multi-Scale Studies of 3D Printed MnNaW/SiO2 Catalyst for Oxidative Coupling of Methane. <i>Catalysts</i> , 2021 , 11, 290	4	2

(2020-2021)

271	A comparative energy and costs assessment and optimization for direct air capture technologies. <i>Joule</i> , 2021 , 5, 2047-2076	27.8	20
270	Direct conversion of CO2 to dimethyl ether in a fixed bed membrane reactor: Influence of membrane properties and process conditions. <i>Fuel</i> , 2021 , 302, 121080	7.1	7
269	Tailoring pore structure and surface chemistry of microporous Alumina-Carbon Molecular Sieve Membranes (Al-CMSMs) by altering carbonization temperature for optimal gas separation performance: An investigation using low-field NMR relaxation measurements. <i>Chemical Engineering</i>	14.7	8
268	Multi-Scale Analysis of Integrated C1 (CH4 and CO2) Utilization Catalytic Processes: Impacts of Catalysts Characteristics up to Industrial-Scale Process Flowsheeting, Part II: Techno-Economic Analysis of Integrated C1 Utilization Process Scenarios. <i>Catalysts</i> , 2020 , 10, 488	4	1
267	Optimization of solvent properties for post-combustion CO2 capture using process simulation. <i>International Journal of Greenhouse Gas Control</i> , 2020 , 99, 103080	4.2	5
266	Pt/Re/CeO2 Based Catalysts for CO-Water G as Shift Reaction: from Powders to Structured Catalyst. <i>Catalysts</i> , 2020 , 10, 564	4	7
265	Oxidative Coupling of Methane in Membrane Reactors; A Techno-Economic Assessment. <i>Processes</i> , 2020 , 8, 274	2.9	11
264	Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. <i>International Journal of Hydrogen Energy</i> , 2020 , 46, 23417-23417	6.7	22
263	Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability. <i>Separation and Purification Technology</i> , 2020 , 240, 116654	8.3	3
262	Mass transport in hydrogen permeation through Pd-based membranes 2020 , 63-90		2
261	Membrane reactors using metallic membranes 2020 , 235-260		3
260	Energy analysis of innovative systems with metallic membranes 2020 , 293-311		
259	An overview of some recent european projects on metallic membranes 2020 , 313-379		0
258	Metallic membranes for hydrogen separation 2020 , 1-29		2
257	Evaluation of a Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. <i>Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combining Wet Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Direct Air Capture Process Combined Proc</i>	3.9	22
256	Degradation of Pd/Nb30Ti35Co35/Pd hydrogen permeable membrane: A numerical description. <i>Journal of Membrane Science</i> , 2020 , 601, 117922	9.6	8
255	Synthesis of N-doped carbon dots via a microplasma process. <i>Chemical Engineering Science</i> , 2020 , 220, 115648	4.4	23
254	Konventionelle Verfahren zur Wasserstoffherstellung 2020 , 17-37		

253	Optimal Membrane-Process Design (OMPD): A software product for optimal design of membrane gas separation processes. <i>Computers and Chemical Engineering</i> , 2020 , 135, 106724	4	5
252	Effect of CO2 on the performance of an electrochemical hydrogen compressor. <i>Chemical Engineering Journal</i> , 2020 , 392, 123647	14.7	5
251	Performance control of dead-end tubular membranes fabricated with a modified phase inversion casting method. <i>Ceramics International</i> , 2020 , 46, 22429-22437	5.1	4
250	Latest Developments in Membrane (Bio)Reactors. <i>Processes</i> , 2020 , 8, 1239	2.9	13
249	Experimental Investigation of the Oxidative Coupling of Methane in a Porous Membrane Reactor: Relevance of Back-Permeation. <i>Membranes</i> , 2020 , 10,	3.8	4
248	Vapor Pressure Assessment of Sulfolane-Based Eutectic Solvents: Experimental, PC-SAFT, and Molecular Dynamics. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 10386-10397	3.4	5
247	Metal membranes in hydrogen separation and purification 2020 , 321-350		0
246	Water Adsorption Effect on Carbon Molecular Sieve Membranes in H2-CH4 Mixture at High Pressure. <i>Energies</i> , 2020 , 13, 3577	3.1	2
245	Comparison between carbon molecular sieve and Pd-Ag membranes in H2-CH4 separation at high pressure. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 28876-28892	6.7	4
244	Carbon Nanotubes for Hydrogen Purification and Storage 2020 , 211-238		
243	Oxidative Coupling of Methane: A Comparison of Different Reactor Configurations. <i>Energy Technology</i> , 2020 , 8, 1900148	3.5	11
242	Hydrogen permeation and stability in ultra-thin PdRu supported membranes. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 7455-7467	6.7	11
241	Process design for green hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 7266	(7.7 277	20
240	Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 7303-7312	6.7	8
239	Effect of sweep gas on hydrogen permeation of supported Pd membranes: Experimental and modeling. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4228-4239	6.7	22
238	Effect of operating conditions and effectiveness factor on hydrogenation of CO2 to hydrocarbons. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 28586-28602	6.7	7
237	Techno-Economic Assessment in a Fluidized Bed Membrane Reactor for Small-Scale H Production: Effect of Membrane Support Thickness. <i>Membranes</i> , 2019 , 9,	3.8	6
236	Determination of the Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Perturbed-Chain Statistical Associating Fluid Theory Modeling. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4047-4057	8.3	47

(2019-2019)

235	Bee Colony (ABC) and Differential Evolution (DE) algorithms. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4630-4649	6.7	20
234	Techno-economic assessment of an integrated high pressure chemical-looping process with packed-bed reactors in large scale hydrogen and methanol production. <i>International Journal of Greenhouse Gas Control</i> , 2019 , 88, 71-84	4.2	29
233	Synthesis of luminescent carbon quantum dots by microplasma process. <i>Chemical Engineering and Processing: Process Intensification</i> , 2019 , 140, 29-35	3.7	53
232	Membranes utilization for biogas upgrading to synthetic natural gas 2019 , 245-274		2
231	Experimental and modelling study of an electrochemical hydrogen compressor. <i>Chemical Engineering Journal</i> , 2019 , 369, 432-442	14.7	34
230	Investigating the role of the different metals in hydrotalcite Mg/Al-based adsorbents and their interaction with acidic sorbate species. <i>Chemical Engineering Science</i> , 2019 , 200, 138-146	4.4	10
229	Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: A Review. <i>Processes</i> , 2019 , 7, 128	2.9	39
228	Recent progress of the Ca-Cu technology for decarbonisation of power plants and carbon intensive industries. <i>International Journal of Greenhouse Gas Control</i> , 2019 , 85, 71-85	4.2	10
227	Long-Term Stability of Thin-Film Pd-Based Supported Membranes. <i>Processes</i> , 2019 , 7, 106	2.9	18
226	Sequential and in Situ Extraction of Furfural from Reaction Mixture and Effect of Extracting Agents on Furfural Degradation. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 16116-16125	3.9	7
225	Thermodynamic properties of hydrophobic deep eutectic solvents and solubility of water and HMF in them: Measurements and PC-SAFT modeling. <i>Fluid Phase Equilibria</i> , 2019 , 489, 75-82	2.5	39
224	110th Anniversary: Distribution Coefficients of Furfural and 5-Hydroxymethylfurfural in Hydrophobic Deep Eutectic Solvent + Water Systems: Experiments and Perturbed-Chain Statistical Associating Fluid Theory Predictions. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 4240-4.	3.9 247	31
223	Real-time determination of optimal switching times for a H2 production process with CO2 capture using Gaussian Process Regression models. <i>Computer Aided Chemical Engineering</i> , 2019 , 46, 1219-1224	0.6	3
222	Optimal Operation and Control of Fluidized Bed Membrane Reactors for Steam Methane Reforming. <i>Computer Aided Chemical Engineering</i> , 2019 , 1231-1236	0.6	1
221	Microstructure Control of Tubular Micro-Channelled Supports Fabricated by the Phase Inversion Casting Method. <i>Processes</i> , 2019 , 7, 322	2.9	1
220	Ethanol Reforming in Thermally Coupled, Fluidized-Bed, Bubble Column, and Membrane Reactors 2019 , 355-382		
219	Kinetic model for adsorption and desorption of H2O and CO2 on hydrotalcite-based adsorbents. <i>Chemical Engineering Journal</i> , 2019 , 355, 520-531	14.7	25
218	A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2933-2942	8.3	156

217	Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 065201	3	19
216	Plasma Assisted Catalytic Conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor. <i>Plasma Chemistry and Plasma Processing</i> , 2019 , 39, 109-124	3.6	23
215	3D printed versus spherical adsorbents for gas sweetening. <i>Chemical Engineering Journal</i> , 2019 , 357, 309-319	14.7	30
214	Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 71, 9-19	4.2	12
213	Unravelling the transport mechanism of pore-filled membranes for hydrogen separation. <i>Separation and Purification Technology</i> , 2018 , 203, 41-47	8.3	11
212	Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 72, 163-174	4.2	25
211	CO2 and H2O chemisorption mechanism on different potassium-promoted sorbents for SEWGS processes. <i>Journal of CO2 Utilization</i> , 2018 , 25, 180-193	7.6	15
210	Inorganic Membrane Reactors for Methanol Synthesis 2018 , 493-518		4
209	Hydrogen production with integrated CO2 capture in a membrane assisted gas switching reforming reactor: Proof-of-Concept. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 6177-6190	6.7	34
208	Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica. <i>Catalysis Today</i> , 2018 , 307, 175-188	5.3	33
207	Plasma assisted nitrogen oxide production from air: Using pulsed powered gliding arc reactor for a containerized plant. <i>AICHE Journal</i> , 2018 , 64, 526-537	3.6	38
206	Non-ideal hydrogen permeation through V-alloy membranes. <i>Journal of Membrane Science</i> , 2018 , 564, 456-464	9.6	7
205	Techno-economic analysis of the Ca-Cu process integrated in hydrogen plants with CO2 capture. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 15720-15738	6.7	24
204	An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. <i>Journal of CO2 Utilization</i> , 2018 , 24, 228-239	7.6	113
203	On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: Modelling and experimental validation. <i>Chemical Engineering Journal</i> , 2018 , 348, 232-243	14.7	34
202	Progress in spherical packed-bed reactors: Opportunities for refineries and chemical industries. <i>Chemical Engineering and Processing: Process Intensification</i> , 2018 , 132, 16-24	3.7	13
201	Attrition-resistant membranes for fluidized-bed membrane reactors: Double-skin membranes. Journal of Membrane Science, 2018 , 563, 419-426	9.6	24
200	Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors. <i>Journal of Membrane Science</i> , 2018 , 550, 536-544	9.6	27

(2017-2018)

199	Influence of material composition on the CO2 and H2O adsorption capacities and kinetics of potassium-promoted sorbents. <i>Chemical Engineering Journal</i> , 2018 , 334, 2115-2123	14.7	20	
198	Modeling of autothermal reforming of methane in a fluidized bed reactor with perovskite membranes. <i>Chemical Engineering and Processing: Process Intensification</i> , 2018 , 124, 308-318	3.7	17	
197	Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. <i>Processes</i> , 2018 , 6, 248	2.9	58	
196	Chemical Looping Processes Using Packed Bed Reactors 2018 , 61-92		2	
195	Thermodynamic Aspects in Non-Ideal Metal Membranes for Hydrogen Purification. <i>Membranes</i> , 2018 , 8,	3.8	7	
194	Membrane Optimization and Process Condition Investigation for Enhancing the CO2 Separation From Natural Gas 2018 , 469-509		2	
193	Adsorption behavior and kinetics of H2S on a potassium-promoted hydrotalcite. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 20758-20771	6.7	7	
192	Optimization of a Gas Switching Combustion process through advanced heat management strategies. <i>Applied Energy</i> , 2017 , 185, 1459-1470	10.7	15	
191	Experimental investigation on the generic effects of gas permeation through flat vertical membranes. <i>Powder Technology</i> , 2017 , 316, 207-217	5.2	5	
190	On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications. <i>Chemical Engineering Journal</i> , 2017 , 314, 554-569	14.7	41	
189	Preparation and characterization of ceramic supported ultra-thin (~1 \$\bar{\mu}\$m) Pd-Ag membranes. Journal of Membrane Science, 2017 , 528, 12-23	9.6	46	
188	Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 13970-13987	6.7	20	
187	Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review. <i>Chemical Engineering and Processing: Process Intensification</i> , 2017 , 122, 296-318	3.7	35	
186	Hydrogen production with integrated CO 2 capturelin a novel gas switching reforming reactor: Proof-of-concept. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 14367-14379	6.7	34	
185	Achievements of European projects on membrane reactor for hydrogen production. <i>Journal of Cleaner Production</i> , 2017 , 161, 1442-1450	10.3	34	
184	PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. <i>Fluid Phase Equilibria</i> , 2017 , 448, 94-98	2.5	50	
183	Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2conversion. <i>Plasma Sources Science and Technology</i> , 2017 , 26, 125002	3.5	26	
182	Chemical Looping Technologies for H2 Production With CO2 Capture: Thermodynamic Assessment and Economic Comparison. <i>Energy Procedia</i> , 2017 , 114, 419-428	2.3	19	

181	Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane. <i>Faraday Discussions</i> , 2017 , 206, 77-92	3.6	36
180	Thermophysical Properties and Solubility of Different Sugar-Derived Molecules in Deep Eutectic Solvents. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 3633-3641	2.8	35
179	Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes. <i>Journal of Membrane Science</i> , 2017 , 542, 329-341	9.6	25
178	Packed Bed Ca-Cu Looping Process Integrated with a Natural Gas Combined Cycle for Low Emission Power Production. <i>Energy Procedia</i> , 2017 , 114, 104-112	2.3	5
177	Comparison of conventional and spherical reactor for the industrial auto-thermal reforming of methane to maximize synthesis gas and minimize CO2. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 19798-19809	6.7	20
176	Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. <i>Energy Conversion and Management</i> , 2017 , 154, 244-261	10.6	48
175	Detecting densified zone formation in membrane-assisted fluidized bed reactors through pressure measurements. <i>Chemical Engineering Journal</i> , 2017 , 308, 1154-1164	14.7	11
174	Sorption-Enhanced Watertas Shift. Advances in Chemical Engineering, 2017, 1-96	0.6	11
173	Recent Advances in Pd-Based Membranes for Membrane Reactors. <i>Molecules</i> , 2017 , 22,	4.8	59
172	PtNi based catalyst for ethanol reforming in a fluidized bed membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 20122-20136	6.7	33
171	On the measurement of solids circulation rates in interconnected fluidized beds: Comparison of different experimental techniques. <i>Powder Technology</i> , 2016 , 302, 81-89	5.2	9
170	Effect of Re addition on the WGS activity and stability of Pt/CeO2IIiO2 catalyst for membrane reactor applications. <i>Catalysis Today</i> , 2016 , 268, 95-102	5.3	20
169	Experimental demonstration of control strategies for a Gas Switching Combustion reactor for power production with integrated CO2 capture. <i>Chemical Engineering Research and Design</i> , 2016 , 111, 342-352	5.5	4
168	The effect of gas permeation through vertical membranes on chemical switching reforming (CSR) reactor performance. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8640-8655	6.7	13
167	Techno-economic assessment of membrane assisted fluidized bed reactors for pure H 2 production with CO 2 capture. <i>Energy Conversion and Management</i> , 2016 , 120, 257-273	10.6	95
166	Investigation on the decrease in the reduction rate of oxygen carriers for chemical looping combustion. <i>Powder Technology</i> , 2016 , 301, 429-439	5.2	13
165	New high temperature sealing technique and permeability data for hollow fiber BSCF perovskite membranes. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 107, 206-219	3.7	17
164	Pd-based metallic supported membranes: High-temperature stability and fluidized bed reactor testing. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8706-8718	6.7	41

(2015-2016)

163	Development of an endoscopic-laser PIV/DIA technique for high-temperature gas lolid fluidized beds. Chemical Engineering Science, 2016, 143, 351-363	4.4	8	
162	Chemisorption working capacity and kinetics of CO2 and H2O of hydrotalcite-based adsorbents for sorption-enhanced water-gas-shift applications. <i>Chemical Engineering Journal</i> , 2016 , 293, 9-23	14.7	44	
161	Preparation and characterization of metallic supported thin PdAg membranes for hydrogen separation. <i>Chemical Engineering Journal</i> , 2016 , 305, 182-190	14.7	63	
160	N2, He and CO2 diffusion mechanism through nanoporous YSZ/FAl2O3 layers and their use in a pore-filled membrane for hydrogen membrane reactors. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8732-8744	6.7	13	
159	Development of highly permeable ultra-thin Pd-based supported membranes. <i>Chemical Engineering Journal</i> , 2016 , 305, 149-155	14.7	24	
158	Process Intensification via Membrane Reactors, the DEMCAMER Project. <i>Processes</i> , 2016 , 4, 16	2.9	10	
157	Morphology and NIPermeance of Sputtered Pd-Ag Ultra-Thin Film Membranes. <i>Molecules</i> , 2016 , 21,	4.8	4	
156	Fluidized Bed Membrane Reactors for Ultra Pure HIProductionA Step forward towards Commercialization. <i>Molecules</i> , 2016 , 21, 376	4.8	34	
155	Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project. <i>Processes</i> , 2016 , 4, 37	2.9	2	
154	Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds. <i>Sensors</i> , 2016 , 16, 300	3.8	4	
153	Kinetics of the Reactions Prevailing during Packed-Bed Chemical Looping Combustion of Syngas using Ilmenite. <i>Energy Technology</i> , 2016 , 4, 1137-1146	3.5	12	
152	Pre-combustion packed bed chemical looping (PCCL) technology for efficient H2-rich gas production processes. <i>Chemical Engineering Journal</i> , 2016 , 294, 478-494	14.7	11	
151	Definition of validated membrane reactor model for 5[kW power output CHP system for different			
	natural gas compositions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19141-19153	6.7	17	
150		6.7	43	
150 149	natural gas compositions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19141-19153 Investigation of the process operability windows for Ca-Cu looping for hydrogen production with	,		
	natural gas compositions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19141-19153 Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture. <i>Chemical Engineering Journal</i> , 2016 , 303, 73-88 Gas Switching as a Practical Alternative for Scaleup of Chemical Looping Combustion. <i>Energy</i>	14.7	43	
149	natural gas compositions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19141-19153 Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture. <i>Chemical Engineering Journal</i> , 2016 , 303, 73-88 Gas Switching as a Practical Alternative for Scaleup of Chemical Looping Combustion. <i>Energy Technology</i> , 2016 , 4, 1286-1298 Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal	14.7 3.5	43	
149 148	Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture. <i>Chemical Engineering Journal</i> , 2016 , 303, 73-88 Gas Switching as a Practical Alternative for Scaleup of Chemical Looping Combustion. <i>Energy Technology</i> , 2016 , 4, 1286-1298 Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 36, 34-50 Energy analysis of two stage packed-bed chemical looping combustion configurations for	3.5 4.2	43 12 44	

145	Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 10883-10893	6.7	43
144	Using palladium membrane-based fuel reformers for combined heat and power (CHP) plants 2015 , 319-	344	
143	Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 10090-10102	6.7	14
142	Boosting the IGCLC process efficiency by optimizing the desulfurization step. <i>Applied Energy</i> , 2015 , 157, 422-432	10.7	7
141	Experimental demonstration of chemical-looping combustion of syngas in packed bed reactors with ilmenite. <i>Chemical Engineering Journal</i> , 2015 , 274, 156-168	14.7	39
140	Reactivity of Oxygen Carriers for Chemical-Looping Combustion in Packed Bed Reactors under Pressurized Conditions. <i>Energy & Energy & 2015</i> , 29, 2656-2663	4.1	23
139	On the effect of gas pockets surrounding membranes in fluidized bed membrane reactors: An experimental and numerical study. <i>Chemical Engineering Journal</i> , 2015 , 282, 45-57	14.7	14
138	The effect of frictional pressure, geometry and wall friction on the modelling of a pseudo-2D bubbling fluidised bed reactor. <i>Powder Technology</i> , 2015 , 283, 85-102	5.2	9
137	Hydrodynamic study of a Two-Section Two-Zone Fluidized Bed Reactor with an immersed tube bank via PIV/DIA. <i>Chemical Engineering Science</i> , 2015 , 134, 238-250	4.4	14
136	Membrane reactors for autothermal reforming of methane, methanol, and ethanol 2015 , 61-98		1
135	Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor. <i>Applied Energy</i> , 2015 , 157, 374-381	10.7	13
134	NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications. <i>Applied Energy</i> , 2015 , 158, 86-96	10.7	37
133	Preparation and characterization of thin-film PdAg supported membranes for high-temperature applications. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 13463-13478	6.7	49
132	Experimental demonstration of CLC and the pressure effect in packed bed reactors using NiO/CaAl2O4 as oxygen carrier. <i>Fuel</i> , 2015 , 159, 828-836	7.1	18
131	Development of thin PdAg supported membranes for fluidized bed membrane reactors including WGS related gases. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 3506-3519	6.7	86
130	Heat Management in Gas Switching Combustion for Power Production with Integrated CO2 Capture. <i>Energy Procedia</i> , 2015 , 75, 2215-2220	2.3	3
129	Sorption-Enhanced Fuel Conversion 2015 , 175-208		
128	Pd-Based Membranes in Hydrogen Production for Fuel cells 2015 , 209-242		

Novel Pre-Combustion Power Production: Membrane Reactors **2015**, 53-80

126	Catalytic Reactors with Membrane Separation 2015 , 739-772		1
125	Chemical Looping Combustion for Power Production 2015 , 117-174		3
124	Blue Energy: Salinity Gradient for Energy Conversion 2015 , 267-298		1
123	Cryogenic CO2 Capture 2015 , 7-52		1
122	Oxy Fuel Combustion Power Production Using High Temperature O2 Membranes 2015 , 81-116		1
121	From Biomass to SNG 2015 , 243-266		
120	Bioenergy Intensified Biomass Utilization 2015 , 331-386		1
119	Solar Process Heat and Process Intensification 2015 , 299-330		
118	Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale Hiproduction plant. <i>Molecules</i> , 2015 , 20, 4998-5023	4.8	8
117	2015,		5
116	Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. <i>Chemical Communications</i> , 2015 , 51, 12752-5	5.8	52
115	A novel gas switching combustion reactor for power production with integrated CO 2 capture: Sensitivity to the fuel and oxygen carrier types. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 39, 185-193	4.2	14
114	Experimental Demonstration of Two-Stage Packed Bed Chemical-Looping Combustion Using Syngas with CuO/Al2O3 and NiO/CaAl2O4 as Oxygen Carriers. <i>Industrial & Discounty Engineering Chemistry Research</i> , 2015 , 54, 2001-2011	3.9	12
113	Development and testing of ilmenite granules for packed bed chemical-looping combustion. <i>Chemical Engineering Journal</i> , 2014 , 245, 228-240	14.7	21
112	Gas back-mixing study in a membrane-assisted micro-structured fluidized bed. <i>Chemical Engineering Science</i> , 2014 , 108, 194-202	4.4	22
111	An experimental investigation on the onset from bubbling to turbulent fluidization regime in micro-structured fluidized beds. <i>Powder Technology</i> , 2014 , 256, 166-174	5.2	13
110	Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors. <i>Catalysis Today</i> , 2014 , 236, 23-33	5.3	17

109	Micro-structured fluidized bed membrane reactors: Solids circulation and densified zones distribution. <i>Chemical Engineering Journal</i> , 2014 , 239, 42-52	14.7	40
108	Novel Developments in Fluidized Bed Membrane Reactor Technology. <i>Advances in Chemical Engineering</i> , 2014 , 45, 159-283	0.6	1
107	Comparison on process efficiency for CLC of syngas operated in packed bed and fluidized bed reactors. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 28, 65-78	4.2	57
106	Methane partial oxidation over a LaCr 0.85 Ru 0.15 O 3 catalyst: Characterization, activity tests and kinetic modeling. <i>Applied Catalysis A: General</i> , 2014 , 486, 239-249	5.1	23
105	Gas mixing study in freely bubbling and turbulent gasBolid fluidized beds with a novel infrared technique coupled with digital image analysis. <i>Chemical Engineering Science</i> , 2014 , 116, 38-48	4.4	12
104	Resource scarcity in palladium membrane applications for carbon capture in integrated gasification combined cycle units. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 10498-10506	6.7	27
103	Integration of coal gasification and packed bed CLC for high efficiency and near-zero emission power generation. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 27, 28-41	4.2	67
102	Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 4725-473	38 ^{.7}	50
101	CLC in packed beds using syngas and CuO/Al2O3: Model description and experimental validation. <i>Applied Energy</i> , 2014 , 119, 163-172	10.7	42
100	Fluidized Bed Membrane Reactors 2014 , 1-2		
100	Fluidized Bed Membrane Reactors 2014, 1-2 Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320	14.7	60
	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor.	14.7	60
99	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320 The generality of the standard 2D TFM approach in predicting bubbling fluidized bed		
99	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320 The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology, 2013, 235, 735-746 Experimental Demonstration of a Novel Gas Switching Combustion Reactor for Power Production	5.2	49
99 98 97	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320 The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology, 2013, 235, 735-746 Experimental Demonstration of a Novel Gas Switching Combustion Reactor for Power Production with Integrated CO2 Capture. Industrial & Demonstration Chemistry Research, 2013, 52, 14241-14250 A novel reactor configuration for packed bed chemical-looping combustion of syngas. International	5.2 3.9	49
99 98 97 96	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320 The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology, 2013, 235, 735-746 Experimental Demonstration of a Novel Gas Switching Combustion Reactor for Power Production with Integrated CO2 Capture. Industrial & Demonstration of Chemistry Research, 2013, 52, 14241-14250 A novel reactor configuration for packed bed chemical-looping combustion of syngas. International Journal of Greenhouse Gas Control, 2013, 16, 1-12 Investigation of heat management for CLC of syngas in packed bed reactors. Chemical Engineering	5.2 3.9 4.2	49 44 70
99 98 97 96	Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chemical Engineering Journal, 2013, 222, 307-320 The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology, 2013, 235, 735-746 Experimental Demonstration of a Novel Gas Switching Combustion Reactor for Power Production with Integrated CO2 Capture. Industrial & Demonstration of Experimental Configuration for packed bed chemical-looping combustion of Syngas. International Journal of Greenhouse Gas Control, 2013, 16, 1-12 Investigation of heat management for CLC of Syngas in packed bed reactors. Chemical Engineering Journal, 2013, 225, 174-191	5.2 3.9 4.2 14.7 2.3	49 44 70 59

(2011-2013)

91	Influence of Reactor and Particle Scale on the Hydrodynamics of Microstructured Fluidized Bed Membrane Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 18192-18205	3.9	5
90	Integrated autothermal oxidative coupling and steam reforming of methane. Part 2: Development of a packed bed membrane reactor with a dual function catalyst. <i>Chemical Engineering Science</i> , 2012 , 82, 232-245	4.4	19
89	Integrated autothermal oxidative coupling and steam reforming of methane. Part 1: Design of a dual-function catalyst particle. <i>Chemical Engineering Science</i> , 2012 , 82, 200-214	4.4	14
88	Coupled PIV/DIA for fluid dynamics studies on a Two-Section Two-Zone Fluidized Bed Reactor. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 122-132	14.7	15
87	Design of a Packed Bed Membrane Reactor for the Oxidative Coupling of Methane. <i>Procedia Engineering</i> , 2012 , 44, 1724-1725		
86	A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst. <i>Applied Catalysis A: General</i> , 2012 , 433-434, 96-108	5.1	29
85	Membranes Prepared via Phase Inversion 2011 , 475-490		5
84	2011,		22
83	Comparison between fixed bed and fluidized bed membrane reactor configurations for PEM based micro-cogeneration systems. <i>Chemical Engineering Journal</i> , 2011 , 171, 1415-1427	14.7	41
82	A theoretical investigation of CLC in packed beds. Part 1: Particle model. <i>Chemical Engineering Journal</i> , 2011 , 167, 297-307	14.7	62
81	A theoretical investigation of CLC in packed beds. Part 2: Reactor model. <i>Chemical Engineering Journal</i> , 2011 , 167, 369-376	14.7	56
80	Experimental Investigation of Chemical-Looping Combustion in Packed Beds: A Parametric Study. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1968-1980	3.9	56
79	Zeolite Membrane Reactors 2011 , 243-273		3
78	Microporous Carbon Membranes 2011 , 63-97		1
77	Metallic Membranes by Wire Arc Spraying: Preparation, Characterisation and Applications 2011 , 99-115		
76	Introduction IA Review of Membrane Reactors 2011 , 1-61		16
75	Metallic Membranes Prepared by Cold Rolling and Diffusion Welding 2011 , 155-167		
74	Inorganic Hollow Fibre Membranes for Chemical Reaction 2011 , 117-153		О

73	Preparation and Synthesis of Mixed Ionic and Electronic Conducting Ceramic Membranes for Oxygen Permeation 2011 , 169-199	
72	Nanostructured Perovskites for the Fabrication of Thin Ceramic Membranes and Related Phenomena 2011 , 201-225	3
71	Compact Catalytic Membrane Reactors for Reforming Applications Based on an Integrated Sandwiched Catalyst Layer 2011 , 227-242	
70	Metal Supported and Laminated Pd-Based Membranes 2011 , 275-287	
69	PVD Techniques for Metallic Membrane Reactors 2011 , 289-314	
68	Membranes Prepared via Electroless Plating 2011 , 315-333	1
67	Membranes Prepared via Molecular Layering Method 2011 , 357-369	2
66	Silica Membranes (Preparation by Chemical Vapour Deposition and Characteristics 2011, 335-356	1
65	Solvated Metal Atoms in the Preparation of Catalytic Membranes 2011 , 371-380	2
64	Electrochemical Preparation of Nanoparticle Deposits: Application to Membranes and Catalysis 2011 , 395-407	1
63	Electrophoretic Deposition for the Synthesis of Inorganic Membranes 2011 , 381-393	
62	Electrochemical Preparation of Pd Seeds/Inorganic Multilayers on Structured Metallic Fibres 2011 , 409-418	
61	Membranes Prepared via Spray Pyrolysis 2011 , 419-434	
60	Preparation and Characterisation of Nanocrystalline and Quasicrystalline Alloys by Planar Flow Casting for Metal Membranes 2011 , 435-457	
59	Preparation and Characterisation of Amorphous Alloy Membranes 2011 , 459-473	1
58	Porous Flat Sheet, Hollow Fibre and Capsule Membranes by Phase Separation of Polymer Solutions 2011 , 491-510	1
57	Porous Polymer Membranes by Manufacturing Technologies other than Phase Separation of Polymer Solutions 2011 , 511-529	1
56	Membrane Prepared via Plasma Modification 2011 , 549-568	

Palladium-Loaded Polymeric Membranes for Hydrogenation in Catalytic Membrane Reactors 2011, 531-548 5 55 Enzyme-Immobilised Polymer Membranes for Chemical Reactions 2011, 569-589 54 A Review on Recent Patents on Chemical and Calcium Looping Processes. Recent Patents on 3 53 Chemical Engineering, **2011**, 4, 280-290 Advanced carbon dioxide (CO 2) gas separation membrane development for power plants 2010, 143-186 52 Experimental Investigation of a CuO/Al2O3 Oxygen Carrier for Chemical-Looping Combustion. 51 3.9 39 Industrial & amp; Engineering Chemistry Research, 2010, 49, 9720-9728 Solar membrane natural gas steam-reforming process: evaluation of reactor performance. 50 1.3 13 Asia-Pacific Journal of Chemical Engineering, **2010**, 5, 179-190 A simplified method for limit conversion calculation in membrane reactors. Asia-Pacific Journal of 49 1.3 3 Chemical Engineering, **2010**, 5, 226-234 Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane 48 68 6.7 reactor: A simulation study. International Journal of Hydrogen Energy, 2010, 35, 1659-1668 Ethanol steam reforming heated up by molten salt CSP: Reactor assessment. International Journal 6.7 12 47 of Hydrogen Energy, 2010, 35, 3463-3471 Theoretical comparison of packed bed and fluidized bed membrane reactors for methane 46 82 6.7 reforming. International Journal of Hydrogen Energy, 2010, 35, 7142-7150 A Review on Patents for Hydrogen Production Using Membrane Reactors. Recent Patents on 45 3 Chemical Engineering, 2010, 2, 207-222 Ethanol steam reforming kinetics of a PdAg membrane reactor. International Journal of Hydrogen 6.7 29 44 Energy, 2009, 34, 4747-4754 Autothermal reforming of methane with integrated CO2 capture in novel fluidized bed membrane 43 1.3 12 reactors. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 334-344 A Review on Patents for Hydrogen Production Using Membrane Reactors. Recent Patents on 42 19 Chemical Engineering, 2009, 2, 207-222 Synthesis, Characterization, and Applications of Palladium Membranes. Membrane Science and 76 41 Technology, 2008, 255-323 Hydrogen Production by Ethanol Steam Reforming: Experimental Study of a Pd-Ag Membrane Reactor and Traditional Reactor Behaviour. International Journal of Chemical Reactor Engineering, 40 11 1.2 2008, 6, Methanol oxidative dehydrogenation on nanostructured vanadium-containing composite 6 9.6 39 membranes. Journal of Membrane Science, 2008, 317, 88-95 Low temperature ethanol steam reforming in a Pd-Ag membrane reactorPart 1: Ru-based catalyst. 38 9.6 76 Journal of Membrane Science, 2008, 308, 250-257

37	TiNiPd dense membranesThe effect of the gas mixtures on the hydrogen permeation. <i>Journal of Membrane Science</i> , 2008 , 310, 44-50	9.6	24
36	The effect of heat-flux profile and of other geometric and operating variables in designing industrial membrane methane steam reformers. <i>Chemical Engineering Journal</i> , 2008 , 138, 442-451	14.7	29
35	Ethanol steam reforming in a dense PdAg membrane reactor: A modelling work. Comparison with the traditional system. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 644-651	6.7	48
34	Autothermal Reforming of Methane with Integrated CO2 Capture in a Novel Fluidized Bed Membrane Reactor. Part 1: Experimental Demonstration. <i>Topics in Catalysis</i> , 2008 , 51, 133-145	2.3	62
33	Autothermal Reforming of Methane with Integrated CO2 Capture in a Novel Fluidized Bed Membrane Reactor. Part 2 Comparison of Reactor Configurations. <i>Topics in Catalysis</i> , 2008 , 51, 146-157	2.3	36
32	CO-Free Hydrogen Production by Ethanol Steam Reforming in a PdAg Membrane Reactor. <i>Fuel Cells</i> , 2008 , 8, 62-68	2.9	38
31	Acetic acid steam reforming in a PdAg membrane reactor: The effect of the catalytic bed pattern. Journal of Membrane Science, 2008, 311, 46-52	9.6	57
30	Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. <i>Catalysis Today</i> , 2008 , 137, 17-22	5.3	87
29	PdAg membrane reactor for steam reforming reactions: A comparison between different fuels. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 1671-1687	6.7	85
28	Design and process study of Pd membrane reactors. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5098-5105	6.7	93
27	Co-current and counter-current configurations for ethanol steam reforming in a dense PdAg membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 6165-6171	6.7	43
26	PdAg tubular membrane reactors for methane dry reforming: A reactive method for CO2 consumption and H2 production. <i>Journal of Membrane Science</i> , 2008 , 317, 96-105	9.6	63
25	Low-temperature ethanol steam reforming in a PdAg membrane reactorPart 2. Pt-based and Ni-based catalysts and general comparison. <i>Journal of Membrane Science</i> , 2008 , 308, 258-263	9.6	40
24	Methanol as an Energy Source and/or Energy Carrier in Membrane Processes. <i>Separation and Purification Reviews</i> , 2007 , 36, 175-202	7.3	22
23	The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1837-1845	6.7	78
22	Methanol and ethanol steam reforming in membrane reactors: An experimental study. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 1201-1210	6.7	89
21	New TiNi dense membranes with low palladium content. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 4016-4022	6.7	21
20	Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis. <i>Energy Conversion and Management</i> , 2007 , 48, 2680-2693	10.6	62

(2003-2007)

19	The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 4052-4058	6.7	35
18	A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 5050-5058	6.7	63
17	An experimental investigation on methanol steam reforming with oxygen addition in a flat PdAg membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 1615-1622	6.7	53
16	Steam Reforming of Methane in a Membrane Reactor: An Industrial Case Study. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2994-3000	3.9	70
15	Methanol oxidative dehydrogenation on nanostructured composite membranes. <i>Desalination</i> , 2006 , 200, 692-694	10.3	5
14	The pressure effect on ethanol steam reforming in membrane reactor: experimental study. <i>Desalination</i> , 2006 , 200, 671-672	10.3	3
13	Co-current and counter-current modes for methanol steam reforming membrane reactor: Experimental study. <i>Catalysis Today</i> , 2006 , 118, 237-245	5.3	59
12	Co-current and counter-current modes for methanol steam reforming membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 2243-2249	6.7	34
11	Long-term tests of PdAg thin wall permeator tube. <i>Journal of Membrane Science</i> , 2006 , 284, 393-397	9.6	76
10	Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor. <i>Catalysis Today</i> , 2005 , 104, 251-259	5.3	50
9	A dense Pd/Ag membrane reactor for methanol steam reforming: Experimental study. <i>Catalysis Today</i> , 2005 , 104, 244-250	5.3	74
8	An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2004 , 43, 1029-1036	3.7	134
7	A simulation study of the steam reforming of methane in a dense tubular membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 611-617	6.7	149
6	Hydrogen Recovery from Methanol Steam Reforming in a Dense Membrane Reactor: Simulation Study. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2420-2432	3.9	52
5	Experimental Study of the Methane Steam Reforming Reaction in a Dense Pd/Ag Membrane Reactor. <i>Industrial & Dense Pd/Ag Membrane Reactor</i> .	3.9	116
4	Co-current and counter-current modes for water gas shift membrane reactor. <i>Catalysis Today</i> , 2003 , 82, 275-281	5.3	45
3	An Ru-based catalytic membrane reactor for dry reforming of methanells catalytic performance compared with tubular packed bed reactors. <i>Catalysis Today</i> , 2003 , 82, 57-65	5.3	47
2	Partial Oxidation of Methane in a Catalytic Ruthenium Membrane Reactor. <i>Industrial & amp;</i> Engineering Chemistry Research, 2003 , 42, 2968-2974	3.9	10

Recent Advances and Challenges of Deep Eutectic Solvent based Supported Liquid Membranes.

Separation and Purification Reviews,1-19

7.3 2