G Enrico Rovati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6601308/publications.pdf Version: 2024-02-01

		117625	98798
115	4,964	34	67
papers	citations	h-index	g-index
117	117	117	6591
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
2	The Lipoxin Receptor ALX: Potent Ligand-Specific and Stereoselective Actions in Vivo. Pharmacological Reviews, 2006, 58, 463-487.	16.0	431
3	The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 2006, 25, 4615-4627.	7.8	380
4	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
5	The Highly Conserved DRY Motif of Class A G Protein-Coupled Receptors: Beyond the Ground State. Molecular Pharmacology, 2007, 71, 959-964.	2.3	322
6	Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. British Journal of Pharmacology, 2014, 171, 3551-3574.	5.4	173
7	Cysteinylâ€leukotrienes and their receptors in asthma and other inflammatory diseases: Critical update and emerging trends. Medicinal Research Reviews, 2007, 27, 469-527.	10.5	150
8	International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacological Reviews, 2011, 63, 539-584.	16.0	134
9	Leukotrienes as Mediators of Asthma. Pulmonary Pharmacology and Therapeutics, 2001, 14, 3-19.	2.6	102
10	Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Medicinal Research Reviews, 2013, 33, 364-438.	10.5	93
11	Binding Characteristics of Hypothalamic Mu Opioid Receptors throughout the Estrous Cycle in the Rat. Neuroendocrinology, 1993, 58, 366-372.	2.5	79
12	Cysteinyl-Leukotriene Receptor Antagonists: Present Situation and Future Opportunities. Current Medicinal Chemistry, 2006, 13, 3213-3226.	2.4	71
13	Transcellular biosynthesis of eicosanoid lipid mediators. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 377-382.	2.4	71
14	Lower efficacy: interaction with an inhibitory receptor or partial agonism?. Trends in Pharmacological Sciences, 1994, 15, 140-144.	8.7	67
15	CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochemical Pharmacology, 2005, 71, 115-125.	4.4	67
16	Prolonged in vitro exposure of rat brain slices to adenosine analogues: Selective desensitization of adenosine A1 but not A2 receptors. European Journal of Pharmacology, 1992, 227, 317-324.	2.6	60
17	CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respiratory Research, 2006, 7, 42.	3.6	60
18	CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation, Journal of Cell Science, 2005, 118, 5625-5636	2.0	59

#	Article	IF	CITATIONS
19	Pranlukast. Drugs, 2003, 63, 991-1019.	10.9	58
20	International Union of Pharmacology XLIV. Nomenclature for the Oxoeicosanoid Receptor. Pharmacological Reviews, 2004, 56, 149-157.	16.0	54
21	Mutational Analysis of the Highly Conserved ERY Motif of the Thromboxane A2 Receptor: Alternative Role in G Protein-Coupled Receptor Signaling. Molecular Pharmacology, 2004, 66, 880-889.	2.3	54
22	4-Oxystilbene compounds are selective ligands for neuronal nicotinic α Bungarotoxin receptors. British Journal of Pharmacology, 1998, 124, 1197-1206.	5.4	51
23	Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. Journal of Medicinal Chemistry, 2016, 59, 7152-7166.	6.4	49
24	The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. European Journal of Clinical Pharmacology, 2017, 73, 799-809.	1.9	49
25	Cysteinyl-Leukotriene Receptors and Cellular Signals. Scientific World Journal, The, 2007, 7, 1375-1392.	2.1	47
26	Montelukast inhibits tumour necrosis factorâ€Î±â€mediated interleukinâ€8 expression through inhibition of nuclear factorâ€îºB p65â€associated histone acetyltransferase activity. Clinical and Experimental Allergy, 2008, 38, 805-811.	2.9	45
27	DESIGN: Computerized optimization of experimental design for estimating Kd and Bmax in ligand binding experiments. Analytical Biochemistry, 1988, 174, 636-649.	2.4	42
28	Identification of specific binding sites for leukotriene C4 in membranes from human lung. Biochemical Pharmacology, 1985, 34, 2831-2837.	4.4	41
29	Thromboxane prostanoid receptor in human airway smooth muscle cells: a relevant role in proliferation. European Journal of Pharmacology, 2003, 474, 149-159.	3.5	41
30	Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochemical Pharmacology, 2018, 158, 161-173.	4.4	41
31	Dual COXIB/TP antagonists: a possible new twist in NSAID pharmacology and cardiovascular risk. Trends in Pharmacological Sciences, 2010, 31, 102-107.	8.7	40
32	Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 114-130.	5.7	40
33	Leukotriene D4-Induced Activation of Smooth-Muscle Cells From Human Bronchi Is Partly Ca2 +-Independent. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 266-272.	5.6	38
34	DESIGN: Computerized optimization of experimental design for estimating Kd and Bmax in ligand binding experiments. Analytical Biochemistry, 1990, 184, 172-183.	2.4	36
35	Effects of loratadine on cytosolic Ca2+ levels and leukotriene release: novel mechanisms of action independent of the anti-histamine activity. European Journal of Pharmacology, 1994, 266, 219-227.	2.6	35
36	Ligand-binding studies: old beliefs and new strategies. Trends in Pharmacological Sciences, 1998, 19, 365-369.	8.7	34

#	Article	IF	CITATIONS
37	Identification and Characterization of Two Cysteinyl-Leukotriene High Affinity Binding Sites with Receptor Characteristics in Human Lung Parenchyma. Molecular Pharmacology, 1998, 53, 750-758.	2.3	34
38	A functional G300S variant of the cysteinyl leukotriene 1 receptor is associated with atopy in a Tristan da Cunha isolate. Pharmacogenetics and Genomics, 2007, 17, 539-549.	1.5	33
39	Pharmacological differences among CysLT1 receptor antagonists with respect to LTC4 and LTD4 in human lung parenchyma. Biochemical Pharmacology, 2002, 63, 1537-1546.	4.4	31
40	Age-related decline in RACK-1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. Journal of Leukocyte Biology, 2005, 77, 247-256.	3.3	31
41	Boosting Anti-Inflammatory Potency of Zafirlukast by Designed Polypharmacology. Journal of Medicinal Chemistry, 2018, 61, 5758-5764.	6.4	31
42	Pharmacogenetics of the G Protein-Coupled Receptors. Methods in Molecular Biology, 2014, 1175, 189-242.	0.9	31
43	Developmental Expression of Heteromeric Nicotinic Receptor Subtypes in Chick Retina. Molecular Pharmacology, 2003, 63, 1329-1337.	2.3	30
44	Rosuvastatin inhibits human airway smooth muscle cells mitogenic response to eicosanoid contractile agents. Pulmonary Pharmacology and Therapeutics, 2014, 27, 10-16.	2.6	30
45	Involvement of prenylated proteins in calcium signaling induced by LTD4 in differentiated U937 cells. Prostaglandins and Other Lipid Mediators, 2003, 71, 235-251.	1.9	29
46	Antagonism of thromboxane receptors by diclofenac and lumiracoxib. British Journal of Pharmacology, 2007, 152, 1185-1195.	5.4	29
47	CysLT1 signal transduction in differentiated U937 cells involves the activation of the small GTP-binding protein Ras. Biochemical Pharmacology, 2004, 67, 1569-1577.	4.4	28
48	Designing Multitarget Antiâ€inflammatory Agents: Chemical Modulation of the Lumiracoxib Structure toward Dual Thromboxane Antagonists–COXâ€2 Inhibitors. ChemMedChem, 2012, 7, 1647-1660.	3.2	28
49	Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Frontiers in Pharmacology, 2016, 7, 299.	3.5	28
50	Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT 2 receptor. FASEB Journal, 2011, 25, 3519-3528.	0.5	27
51	Thromboxane Prostanoid Receptor Signals Through GiProtein to Rapidly Activate Extracellular Signal–Regulated Kinase in Human Airways. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 326-333.	2.9	25
52	Prostacyclin-lipoprotein interactions. Biochemical Pharmacology, 1985, 34, 2451-2457.	4.4	24
53	A kinetic binding study to evaluate the pharmacological profile of a specific leukotriene C(4) binding site not coupled to contraction in human lung parenchyma. Molecular Pharmacology, 2000, 57, 1182-9.	2.3	24
54	Light on the structure of thromboxane A2 receptor heterodimers. Cellular and Molecular Life Sciences. 2011, 68, 3109-3120.	5.4	23

#	Article	IF	CITATIONS
55	Cysteinyl-leukotrienes in the regulation of β2-adrenoceptor function: an in vitro model of asthma. Respiratory Research, 2006, 7, 103.	3.6	21
56	Heterogeneity of binding sites for ICI 198,615 in human lung parenchyma. Biochemical Pharmacology, 1992, 44, 1411-1415.	4.4	20
57	Binding to Cysteinyl-Leukotriene Receptors. American Journal of Respiratory and Critical Care Medicine, 2000, 161, S46-S50.	5.6	20
58	G-Protein-Coupled Receptors and Asthma Endophenotypes. Molecular Diagnosis and Therapy, 2006, 10, 353-366.	3.8	19
59	Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling through the CysLT2 receptor. Prostaglandins and Other Lipid Mediators, 2015, 120, 115-125.	1.9	19
60	Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain. Journal of Medicinal Chemistry, 2019, 62, 8443-8460.	6.4	19
61	Rapid Metabolization of Protectin D1 by β-Oxidation of Its Polar Head Chain. Journal of Medicinal Chemistry, 2019, 62, 9961-9975.	6.4	18
62	Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro. British Journal of Pharmacology, 1998, 123, 590-598.	5.4	17
63	Bell-shaped curves for prostaglandin-induced modulation of adenylate cyclase: two mutually opposing effects. European Journal of Pharmacology, 2002, 454, 107-114.	3.5	17
64	Functional Characterization of <i>E. coli</i> LptC: Interaction with LPS and a Synthetic Ligand. ChemBioChem, 2014, 15, 734-742.	2.6	16
65	Rational Experimental Design and Data Analysis for Ligand Binding Studies: Tricks, Tips and Pitfalls. Pharmacological Research, 1993, 28, 277-300.	7.1	14
66	Superactive mutants of thromboxane prostanoid receptor: functional and computational analysis of an active form alternative to constitutively active mutants. Cellular and Molecular Life Sciences, 2010, 67, 2979-2989.	5.4	14
67	A potential role of PUFAs and COXIBs in cancer chemoprevention. Prostaglandins and Other Lipid Mediators, 2015, 120, 97-102.	1.9	14
68	The DRY motif and the four corners of the cubic ternary complex model. Cellular Signalling, 2017, 35, 16-23.	3.6	14
69	Montelukast Use Decreases Cardiovascular Events in Asthmatics. Frontiers in Pharmacology, 2020, 11, 611561.	3.5	14
70	Arachidonic Acid and Docosahexaenoic Acid Metabolites in the Airways of Adults With Cystic Fibrosis: Effect of Docosahexaenoic Acid Supplementation. Frontiers in Pharmacology, 2019, 10, 938.	3.5	13
71	Montelukast Inhibits Platelet Activation Induced by Plasma From COVID-19 Patients. Frontiers in Pharmacology, 2022, 13, 784214.	3.5	13
72	More on the classification of cysteinyl leukotriene receptors. Trends in Pharmacological Sciences, 1997, 18, 148.	8.7	12

#	Article	IF	CITATIONS
73	Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation. PLoS ONE, 2013, 8, e60475.	2.5	12
74	Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo. Biochemical Pharmacology, 2017, 124, 43-56.	4.4	12
75	Expression of Prostacyclin Receptors in Luteinizing Hormone-Releasing Hormone Immortalized Neurons: Role in the Control of Hormone Secretion**This work was supported by funds from Telethon (Grant E.523), by CNR through the Project Aging (95.01020PF40), and by MURST Endocrinology, 1999, 140, 171-177.	2.8	10
76	Heterotrimeric G proteins demonstrate differential sensitivity to β-arrestin dependent desensitization. Cellular Signalling, 2009, 21, 1135-1142.	3.6	10
77	A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes. Journal of Lipid Research, 2010, 51, 1075-1084.	4.2	10
78	In vitro pharmacological evaluation of multitarget agents for thromboxane prostanoid receptor antagonism and COX-2 inhibition. Pharmacological Research, 2016, 103, 132-143.	7.1	10
79	Prolonged agonist exposure induces imbalance of A1 and A2 receptor-mediated functions in rat brain slices. Drug Development Research, 1993, 28, 364-368.	2.9	9
80	Pharmacological Characterization of 2NTX-99 [4-Methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide], a Potential Antiatherothrombotic Agent with Antithromboxane and Nitric Oxide Donor Activity in Platelet and Vascular Preparations. Journal of Pharmacology and Experimental Therapeutics, 2006, 317,	2.5	9
81	830-837. Effects of nonâ€steroidal antiâ€inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2337-2354.	5.7	9
82	Reciprocal interference between the NRF2 and LPS signaling pathways on the immuneâ€metabolic phenotype of peritoneal macrophages. Pharmacology Research and Perspectives, 2020, 8, e00638.	2.4	8
83	Rovati and Nicosia reply. Trends in Pharmacological Sciences, 1994, 15, 321-322.	8.7	7
84	Nonsteroidal Anti-Inflammatory Drugs: Exploiting Bivalent COXIB/ TP Antagonists for the Control of Cardiovascular Risk. Current Medicinal Chemistry, 2017, 24, 3218-3230.	2.4	6
85	KINFIT II: a nonlinear least-squares program for analysis of kinetic binding data. Molecular Pharmacology, 1996, 50, 86-95.	2.3	6
86	Non-serotonergic 3H-ketanserin binding sites in human platelets: Characteristics and interaction with calcium antagonists. Pharmacological Research, 1992, 26, 187-199.	7.1	5
87	Adenosine A1 receptors in rat brain synaptosomes: Transductional mechanisms, effects on glutamate release, and preservation after metabolic inhibition. Drug Development Research, 1995, 35, 119-129.	2.9	5
88	Prostacyclin effects on adenylate cyclase in platelets and vascular smooth muscle: interaction with an inhibitory receptor or partial agonism?. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 1995, 23, 263-5.	0.2	5
89	Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells, 2022, 11, 725.	4.1	5
90	MacELLIPSE, A Graphical Aid to the Problem of the Joint Confidence Region: a Practical Example for Ligand Binding Experiments. Pharmacological Research, 1993, 28, 351-358.	7.1	4

#	Article	IF	CITATIONS
91	Two distinct P2Y receptors are involved in purine- and pyrimidine-evoked Ca2+ elevation in mammalian brain astrocytic cultures. Drug Development Research, 2001, 52, 122-132.	2.9	4
92	The DRY motif at work: the P2Y12 receptor case. Journal of Thrombosis and Haemostasis, 2014, 12, 713-715.	3.8	4
93	Receptors and Second Messengers for Cys-Leukotrienes. , 1996, , 127-136.		4
94	Optimization of Experimental Design for Ligand Binding Studies: Improved Estimation of Affinity and Binding Capacity. Pharmacological Research, 1989, 21, 71-72.	7.1	3
95	Identification of hydropathically complementary putative contact sequences within epidermal growth factor (EGF) and the EGF receptor. Life Sciences, 1992, 51, 37-47.	4.3	3
96	Receptors for Cysteinyl-Leukotrienes in Human Cells. Advances in Experimental Medicine and Biology, 1999, 447, 165-170.	1.6	3
97	ERα-independent NRF2-mediated immunoregulatory activity of tamoxifen. Biomedicine and Pharmacotherapy, 2021, 144, 112274.	5.6	3
98	A versatile implementation of the Gauss-Newton minimization algorithm using MATLAB for Macintosh microcomputers. Computer Methods and Programs in Biomedicine, 1990, 32, 161-167.	4.7	2
99	Eicosanoid release and mepyramine, LTC4 and LTD4 binding in passively sensitized human lung parenchyma in vitro. Biochemical Pharmacology, 1991, 42, 419-424.	4.4	2
100	Working Hypothesis on the Classification of Cys-Leukotriene Receptors in Airways. Annals of the New York Academy of Sciences, 1997, 812, 169-170.	3.8	2
101	The many faces of binding artefacts. Trends in Pharmacological Sciences, 2000, 21, 168-169.	8.7	2
102	Expression of Prostacyclin Receptors in Luteinizing Hormone-Releasing Hormone Immortalized Neurons: Role in the Control of Hormone Secretion. Endocrinology, 1999, 140, 171-177.	2.8	2
103	Leukotriene receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
104	Leukotriene modifiers in asthma management. IDrugs: the Investigational Drugs Journal, 2004, 7, 659-66.	0.7	2
105	Antagonism of thromboxane receptors by diclofenac and lumiracoxib. British Journal of Pharmacology, 2008, 153, 1763-1763.	5.4	1
106	Formylpeptide receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
107	Computerized Optimization of Experimental Design for Estimating Binding Affinity and Binding Capacity in Ligand Binding Studies. Methods in Neurosciences, 1992, 10, 175-195.	0.5	1
108	Identification of heterogeneity of leukotriene receptors in membranes of human lung using a computerized modelling approach. Pharmacological Research, 1990, 22, 435.	7.1	0

#	Article	IF	CITATIONS
109	PURINES 2000 meeting: Biochemical, pharmacological and clinical perspectives. Drug Development Research, 2001, 52, iv-iv.	2.9	0
110	Cysteinyl-leukotriene receptors and transduction mechanisms in airway cells. , 1998, , 35-42.		0
111	Evaluation of the Pharmacological Activity of the Pure Cysteinyl-Leukotriene Receptor Antagonists CGP 45715A (Iralukast) and CGP 57698 in Human Airways. Advances in Experimental Medicine and Biology, 1999, 469, 313-318.	1.6	0
112	Discovery of novel inhibitors of the phosphatase activity of the soluble epoxide hydrolase. FASEB Journal, 2018, 32, 558.3.	0.5	0
113	Montelukast and cardiovascular events: Insights from observational retrospective study. , 2019, , .		0
114	Formylpeptide receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
115	Leukotriene receptors (version 2020.3) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	0