
Daniel Marino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6601163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A burst of plant NADPH oxidases. Trends in Plant Science, 2012, 17, 9-15.	8.8	581
2	Reactive Oxygen Species during Plantâ€microorganism Early Interactions. Journal of Integrative Plant Biology, 2010, 52, 195-204.	8.5	275
3	Ubiquitination during Plant Immune Signaling. Plant Physiology, 2012, 160, 15-27.	4.8	191
4	A <i>Medicago truncatula</i> NADPH oxidase is involved in symbiotic nodule functioning. New Phytologist, 2011, 189, 580-592.	7.3	145
5	Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nature Communications, 2013, 4, 1476.	12.8	138
6	Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybean. Plant Physiology, 2007, 145, 539-546.	4.8	124
7	Hydrogen peroxideâ€regulated genes in the <i>Medicago truncatula</i> – <i>Sinorhizobium meliloti</i> symbiosis. New Phytologist, 2013, 198, 179-189.	7.3	118
8	Nitrogen Fixation Control under Drought Stress. Localized or Systemic?. Plant Physiology, 2007, 143, 1968-1974.	4.8	114
9	Nitrogen Fixation Control under Drought Stress. Localized or Systemic?. Plant Physiology, 2007, 143, 1968-1974.	4.8	114
10	The <i>Xanthomonas</i> Type III Effector XopD Targets the <i>Arabidopsis</i> Transcription Factor MYB30 to Suppress Plant Defense. Plant Cell, 2011, 23, 3498-3511.	6.6	109
11	Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Journal of Experimental Botany, 2014, 65, 6023-6033.	4.8	95
12	Sulfenylated proteins in the Medicago truncatula–Sinorhizobium meliloti symbiosis. Journal of Proteomics, 2012, 75, 4102-4113.	2.4	75
13	The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Management Science, 2010, 66, 262-269.	3.4	73
14	Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. Journal of Experimental Botany, 2006, 57, 665-673.	4.8	70
15	Dimethyl pyrazol-based nitrification inhibitors effect on nitrifying and denitrifying bacteria to mitigate N2O emission. Scientific Reports, 2017, 7, 13810.	3.3	62
16	NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+-dependent isocitrate dehydrogenase. Planta, 2006, 225, 413-421.	3.2	52
17	Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in <i>Arabidopsis thaliana</i> and <i>Brassica oleracea</i> . Journal of Experimental Botany, 2016, 67, 3313-3323.	4.8	52
18	CO 2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Science, 2015, 241, 32-44.	3.6	50

DANIEL MARINO

#	Article	IF	CITATIONS
19	Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis. Frontiers in Plant Science, 2016, 7, 29.	3.6	50
20	Can Ammonium Stress Be Positive for Plant Performance?. Frontiers in Plant Science, 2019, 10, 1103.	3.6	49
21	Elevated CO2 Induces Root Defensive Mechanisms in Tomato Plants When Dealing with Ammonium Toxicity. Plant and Cell Physiology, 2017, 58, 2112-2125.	3.1	45
22	Inhibition of nitrogen fixation in symbiotic Medicago truncatula upon Cd exposure is a local process involving leghaemoglobin. Journal of Experimental Botany, 2013, 64, 5651-5660.	4.8	44
23	PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation?. Frontiers in Plant Science, 2015, 6, 81.	3.6	44
24	<i>Arabidopsis thaliana</i> transcription factors <i>MYB28</i> and <i>MYB29</i> shape ammonium stress responses by regulating Fe homeostasis. New Phytologist, 2021, 229, 1021-1035.	7.3	43
25	Evidence for Transcriptional and Post-Translational Regulation of Sucrose Synthase in Pea Nodules by the Cellular Redox State. Molecular Plant-Microbe Interactions, 2008, 21, 622-630.	2.6	33
26	Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Scientific Reports, 2019, 9, 8925.	3.3	32
27	The application of ascorbate or its immediate precursor, galactono-1,4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress. Journal of Plant Physiology, 2008, 165, 805-812.	3.5	30
28	Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biology, 2017, 17, 157.	3.6	30
29	Splitâ€root systems applied to the study of the legumeâ€rhizobial symbiosis: What have we learned?. Journal of Integrative Plant Biology, 2014, 56, 1118-1124.	8.5	26
30	A proteomic approach reveals new actors of nodule response to drought in splitâ€root grown pea plants. Physiologia Plantarum, 2014, 152, 634-645.	5.2	26
31	Mild ammonium stress increases chlorophyll content in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2015, 10, e991596.	2.4	26
32	3,4-Dimethylpyrazole phosphate and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: Quantification in plant tissues and toxicity assays. Science of the Total Environment, 2018, 624, 1180-1186.	8.0	26
33	Chapter 5 The Redox State, a Referee of the Legume–Rhizobia Symbiotic Game. Advances in Botanical Research, 2009, 52, 115-151.	1.1	25
34	Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD. PLoS ONE, 2010, 5, e15773.	2.5	25
35	New Insights on Arabidopsis thaliana Root Adaption to Ammonium Nutrition by the Use of a Quantitative Proteomic Approach. International Journal of Molecular Sciences, 2019, 20, 814.	4.1	22
36	The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato. Frontiers in Plant Science, 2020, 11, 601558.	3.6	18

DANIEL MARINO

#	Article	IF	CITATIONS
37	MtNOA1/RIF1 modulates Medicago truncatula–Sinorhizobium meliloti nodule development without affecting its nitric oxide content. Journal of Experimental Botany, 2011, 62, 939-948.	4.8	17
38	Providing carbon skeletons to sustain amide synthesis in roots underlines the suitability of Brachypodium distachyon for the study of ammonium stress in cereals. AoB PLANTS, 2019, 11, plz029.	2.3	17
39	Expression and Localization of a <i>Rhizobium</i> -Derived Cambialistic Superoxide Dismutase in Pea (<i>Pisum sativum</i>) Nodules Subjected to Oxidative Stress. Molecular Plant-Microbe Interactions, 2011, 24, 1247-1257.	2.6	14
40	IAOx induces the SUR phenotype and differential signalling from IAA under different types of nitrogen nutrition in Medicago truncatula roots. Plant Science, 2019, 287, 110176.	3.6	13
41	A Multi-Species Analysis Defines Anaplerotic Enzymes and Amides as Metabolic Markers for Ammonium Nutrition. Frontiers in Plant Science, 2020, 11, 632285.	3.6	13
42	Is plastidic glutamine synthetase essential for C ₃ plants? A tale of photorespiratory mutants, ammonium tolerance and conifers. New Phytologist, 2022, 234, 1559-1565.	7.3	11
43	Physiological Responses of N2-Fixing Legumes to Water Limitation. , 2015, , 5-33.		10
44	Ammonium supply induces differential metabolic adaptive responses in tomato according to leaf phenological stage. Journal of Experimental Botany, 2021, 72, 3185-3199.	4.8	9
45	Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestrispvcampestris. Plant Signaling and Behavior, 2012, 7, 184-187.	2.4	8
46	Ammonium nutrition interacts with iron homeostasis in <i>Brachypodium distachyon</i> . Journal of Experimental Botany, 2022, 73, 263-274.	4.8	8
47	<i>Knockâ€down</i> of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (<i>Sorghum bicolor</i> L.). Plant Journal, 2022, 111, 231-249.	5.7	8
48	Assessing the efficiency of dimethylpyrazole-based nitrification inhibitors under elevated CO2 conditions. Geoderma, 2021, 400, 115160.	5.1	6
49	Multi-omic and physiologic approach to understand Lotus japonicus response upon exposure to 3,4 dimethylpyrazole phosphate nitrification inhibitor. Science of the Total Environment, 2019, 660, 1201-1209.	8.0	5
50	Arabidopsis MYB28 and MYB29 transcription factors are involved in ammonium-mediated alterations of root-system architecture. Plant Signaling and Behavior, 2021, 16, 1879532.	2.4	4