Emilia Zampella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 521-529.	6.4	58
2	Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with 82Rubidium PET imaging. Journal of Nuclear Cardiology, 2021, 28, 2827-2839.	2.1	44
3	Quantitative relationship between coronary artery calcium and myocardial blood flow by hybrid rubidium-82 PET/CT imaging in patients with suspected coronary artery disease. Journal of Nuclear Cardiology, 2017, 24, 494-501.	2.1	40
4	Diagnostic performance of myocardial perfusion imaging with conventional and CZT single-photon emission computed tomography in detecting coronary artery disease: A meta-analysis. Journal of Nuclear Cardiology, 2021, 28, 698-715.	2.1	40
5	Prognostic value of atherosclerotic burden and coronary vascular function in patients with suspected coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2290-2298.	6.4	39
6	Incremental prognostic value of stress myocardial perfusion imaging in asymptomatic diabetic patients. Atherosclerosis, 2013, 227, 307-312.	0.8	34
7	Prognostic value of coronary flow reserve in patients with suspected or known coronary artery disease referred to PET myocardial perfusion imaging: A meta-analysis. Journal of Nuclear Cardiology, 2021, 28, 904-918.	2.1	33
8	PET/CT in the management of differentiated thyroid cancer. Diagnostic and Interventional Imaging, 2021, 102, 515-523.	3.2	31
9	Comparison of simultaneous 18F-2-[18F] FDG PET/MR and PET/CT in the follow-up of patients with differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 3066-3073.	6.4	27
10	Relationship between epicardial adipose tissue and coronary vascular function in patients with suspected coronary artery disease and normal myocardial perfusion imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 1379-1387.	1.2	26
11	Prognostic Role of 18F-FDG PET/CT in the Postoperative Evaluation of Differentiated Thyroid Cancer Patients. Clinical Nuclear Medicine, 2015, 40, 111-115.	1.3	25
12	Relation between myocardial blood flow and cardiac events in diabetic patients with suspected coronary artery disease and normal myocardial perfusion imaging. Journal of Nuclear Cardiology, 2021, 28, 1222-1233.	2.1	20
13	Pretest models for predicting abnormal stress single-photon emission computed tomography myocardial perfusion imaging. Journal of Nuclear Cardiology, 2021, 28, 1891-1902.	2.1	19
14	A machine learning-based approach to directly compare the diagnostic accuracy of myocardial perfusion imaging by conventional and cadmium-zinc telluride SPECT. Journal of Nuclear Cardiology, 2022, 29, 46-55.	2.1	17
15	Outcome of Patients With Differentiated Thyroid Cancer Treated With 131-lodine on the Basis of a Detectable Serum Thyroglobulin Level After Initial Treatment. Frontiers in Endocrinology, 2019, 10, 146.	3.5	16
16	Temporal trends of abnormal myocardial perfusion imaging in a cohort of Italian subjects: Relation with cardiovascular risk factors. Journal of Nuclear Cardiology, 2020, 27, 2167-2177.	2.1	13
17	A New Relational Database Including Clinical Data and Myocardial Perfusion Imaging Findings in Coronary Artery Disease. Current Medical Imaging, 2019, 15, 661-671.	0.8	12
18	External validation of the CRAX2MACE model in an Italian cohort of patients with suspected coronary artery disease undergoing stress myocardial perfusion imaging. Journal of Nuclear Cardiology, 2022, 29, 2967-2973.	2.1	9

EMILIA ZAMPELLA

#	Article	IF	CITATIONS
19	A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-9.	1.3	9
20	Diagnostic value of clinical risk scores for predicting normal stress myocardial perfusion imaging in subjects without coronary artery calcium. Journal of Nuclear Cardiology, 2022, 29, 323-333.	2.1	7
21	Identification and typing of cardiac amyloidosis by noninvasive imaging: Two cases for two patterns. Journal of Nuclear Cardiology, 2020, 27, 915-920.	2.1	5
22	Prognostic value of heart rate reserve in patients with suspected coronary artery disease undergoing stress myocardial perfusion imaging. Journal of Nuclear Cardiology, 2022, 29, 2521-2530.	2.1	5
23	Relationship between heart rate response and cardiac innervation in patients with suspected or known coronary artery disease. Journal of Nuclear Cardiology, 2021, 28, 2676-2683.	2.1	4
24	Myocardial perfusion reserve by using CZT: It's a long way to the top if you wanna standardize. Journal of Nuclear Cardiology, 2021, 28, 885-887.	2.1	1
25	Cardiac amyloidosis: A new challenge of multimodality imaging. Journal of Nuclear Cardiology, 2020, 27, 106-108.	2.1	1
26	Pretest models for predicting abnormal stress single-photon emission computed tomography myocardial perfusion imaging. , 2021, 28, 1891.		1
27	Myocardial Perfusion Imaging. , 2014, , .		1
28	Advanced technology in the risk stratification-based strategy: The way forward to keep going. Journal of Nuclear Cardiology, 2021, 28, 2937-2940.	2.1	0