Lauren A Zenewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600655/publications.pdf

Version: 2024-02-01

LAUDEN & ZENEWICZ

#	Article	IF	CITATIONS
1	Innate and Adaptive Interleukin-22 Protects Mice from Inflammatory Bowel Disease. Immunity, 2008, 29, 947-957.	14.3	725
2	IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491, 259-263.	27.8	641
3	Interleukin-22 but Not Interleukin-17 Provides Protection to Hepatocytes during Acute Liver Inflammation. Immunity, 2007, 27, 647-659.	14.3	572
4	Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Current Opinion in Pharmacology, 2009, 9, 447-453.	3.5	503
5	Interleukin 23 Production by Intestinal CD103+CD11b+ Dendritic Cells in Response to Bacterial Flagellin Enhances Mucosal Innate Immune Defense. Immunity, 2012, 36, 276-287.	14.3	450
6	Cutting Edge: CD4 and CD8 T Cells Are Intrinsically Different in Their Proliferative Responses. Journal of Immunology, 2002, 168, 1528-1532.	0.8	353
7	Recent advances in IL-22 biology. International Immunology, 2011, 23, 159-163.	4.0	293
8	CD4 T-cell differentiation and inflammatory bowel disease. Trends in Molecular Medicine, 2009, 15, 199-207.	6.7	247
9	IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and Colitogenic. Journal of Immunology, 2013, 190, 5306-5312.	0.8	224
10	Bacterial Flagellin Stimulates Tollâ€Like Receptor 5–Dependent Defense against Vancomycinâ€Resistant <i>Enterococcus</i> Infection. Journal of Infectious Diseases, 2010, 201, 534-543.	4.0	209
11	Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes and Infection, 2007, 9, 1208-1215.	1.9	167
12	Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology. Journal of Experimental Medicine, 2011, 208, 1027-1040.	8.5	164
13	Changes in Availability of Oxygen Accentuate Differences in Capsular Polysaccharide Expression by Phenotypic Variants and Clinical Isolates of <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2001, 69, 5430-5439.	2.2	152
14	The dual nature of TH17 cells: shifting the focus to function. Nature Immunology, 2010, 11, 471-476.	14.5	151
15	5â€~-Methoxyhydnocarpin-D and Pheophorbide A:ÂBerberisSpecies Components that Potentiate Berberine Growth Inhibition of ResistantStaphylococcusaureus. Journal of Natural Products, 2000, 63, 1146-1149.	3.0	133
16	NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature, 2012, 484, 510-513.	27.8	126
17	Unraveling the Genetics of Autoimmunity. Cell, 2010, 140, 791-797.	28.9	116
18	Defective Intestinal Mucin-Type O-Glycosylation Causes Spontaneous Colitis-Associated Cancer in Mice. Gastroenterology, 2016, 151, 152-164.e11.	1.3	105

LAUREN A ZENEWICZ

#	Article	IF	CITATIONS
19	ILâ€⊋2 and inflammation: Leukin' through a glass onion. European Journal of Immunology, 2008, 38, 3265-3268.	2.9	93
20	IL-22: There Is a Gap in Our Knowledge. ImmunoHorizons, 2018, 2, 198-207.	1.8	77
21	Excessive Th1 responses due to the absence of TGF-β signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6961-6966.	7.1	71
22	IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLoS ONE, 2012, 7, e44153.	2.5	65
23	Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12927-12931.	7.1	41
24	Chronic Immunodeficiency in Mice Lacking RasGRP1 Results in CD4 T Cell Immune Activation and Exhaustion. Journal of Immunology, 2007, 179, 2143-2152.	0.8	35
25	Phosphatidylinositol-Specific Phospholipase C ofBacillus anthracisDown-Modulates the Immune Response. Journal of Immunology, 2005, 174, 8011-8016.	0.8	33
26	Oxygen Levels and Immunological Studies. Frontiers in Immunology, 2017, 8, 324.	4.8	33
27	Characterization of Listeria monocytogenes Expressing Anthrolysin O and Phosphatidylinositol-Specific Phospholipase C from Bacillus anthracis. Infection and Immunity, 2005, 73, 6639-6646.	2.2	32
28	Transcription Factor HIF- $1\hat{l}\pm$ Controls Expression of the Cytokine IL-22 in CD4 T Cells. Journal of Immunology, 2016, 197, 2646-2652.	0.8	32
29	Nonsecreted Bacterial Proteins Induce Recall CD8 T Cell Responses But Do Not Serve as Protective Antigens. Journal of Immunology, 2002, 169, 5805-5812.	0.8	28
30	RasGRP1 Regulates Antigen-Induced Developmental Programming by Naive CD8 T Cells. Journal of Immunology, 2010, 184, 666-676.	0.8	23
31	IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Frontiers in Immunology, 2021, 12, 766586.	4.8	22
32	Activation of Antigen-Specific CD8 T Cells Results in Minimal Killing of Bystander Bacteria. Journal of Immunology, 2003, 171, 6032-6038.	0.8	19
33	Glucocorticoids Inhibit Group 3 Innate Lymphocyte IL-22 Production. Journal of Immunology, 2018, 201, 1267-1274.	0.8	14
34	Bacillus anthracis lethal toxin negatively modulates ILC3 function through perturbation of IL-23-mediated MAPK signaling. PLoS Pathogens, 2017, 13, e1006690.	4.7	13
35	Listeria monocytogenes virulence proteins induce surface expression of Fas ligand on T lymphocytes. Molecular Microbiology, 2004, 51, 1483-1492.	2.5	12
36	E3 Ubiquitin Ligase Von Hippel–Lindau Protein Promotes Th17 Differentiation. Journal of Immunology, 2020, 205, 1009-1023.	0.8	12

LAUREN A ZENEWICZ

#	Article	IF	CITATIONS
37	Sugar-Coated Regulation of T Cells. Cell, 2005, 122, 2-4.	28.9	5
38	Hypoxic modulation of hepatocyte responses to the cytokine interleukinâ€22. Immunology and Cell Biology, 2017, 95, 380-387.	2.3	5
39	IL-22 deficiency increases CD4 T cell responses to mucosal immunization. Vaccine, 2018, 36, 3694-3700.	3.8	3
40	Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infection and Immunity, 2022, 90, e0007322.	2.2	3
41	Immune Evasion and Modulation by Listeria monocytogenes. , 2007, , 251-263.		1
42	Group 3 innate lymphocytes (ILC3s) upregulate IL-22 in response to elevated intracellular cAMP levels. Cytokine, 2022, 153, 155862.	3.2	1