Hua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600107/publications.pdf

Version: 2024-02-01

118793 81839 4,841 147 39 62 citations h-index g-index papers 147 5190 147 147 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Enhanced mechanical properties of boron nitride nanosheets/copper composites with a bioinspired laminated structure. Composite Interfaces, 2022, 29, 999-1012.	1.3	11
2	Fabrication of Porous Aluminum Coating by Cored Wire Arc Spray for Anchoring Antifouling Hydrogel Layer. Journal of Thermal Spray Technology, 2022, 31, 119-129.	1.6	4
3	High microwave absorption performance in Nd-substituted BaM/GO through sol-gel and high energy ball milling process. Journal of Alloys and Compounds, 2022, 892, 162207.	2.8	9
4	Preparation, Microstructure and Thermal Properties of Y2O3 Hollow-Sphere Composite Films. Journal of Thermal Spray Technology, 2022, 31, 331-341.	1.6	0
5	Thermal Spray Coatings for Protection Against Microbiologically Induced Corrosion: Recent Advances and Future Perspectives. Journal of Thermal Spray Technology, 2022, 31, 829-847.	1.6	8
6	Structure of the human GlcNAc-1-phosphotransferase $\hat{l}\pm\hat{l}^2$ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nature Structural and Molecular Biology, 2022, 29, 348-356.	3.6	6
7	Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature, 2022, 604, 127-133.	13.7	29
8	Impact of conformational change of immunoglobulin G induced by silver ions on Escherichia coli and macrophage adhesion to biomaterial surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128700.	2.3	0
9	Effects of Bacillus sp. adhesion on cavitation erosion behaviour of nickel aluminium bronze in artificial seawater. Wear, 2022, 498-499, 204344.	1.5	2
10	Interfacial metal/ceramic bonding mechanism for metallization of ceramics via cold spraying. Journal of Materials Processing Technology, 2021, 288, 116845.	3.1	25
11	Thermal-Sprayed Photocatalytic Coatings for Biocidal Applications: A Review. Journal of Thermal Spray Technology, 2021, 30, 1-24.	1.6	42
12	Cold Spray Construction of Nanostructured Titania Coatings for Photocatalytic Applications. Journal of Thermal Spray Technology, 2021, 30, 918-925.	1.6	6
13	Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nature Communications, 2021, 12, 17.	5.8	55
14	Development of Novel Thermal Sprayed Hydroxyapatite-Rare Earth (HA-Re) Coatings for Potential Antimicrobial Applications in Orthopedics. Journal of Thermal Spray Technology, 2021, 30, 886-897.	1.6	10
15	Microstructural Charactistics of Plasma Sprayed NiCrBSi Coatings and Their Wear and Corrosion Behaviors. Coatings, 2021, 11, 170.	1.2	9
16	A rosette like carbon structure controlled through ammoniation for superior adsorption of cationic brilliant green dye. Journal of Porous Materials, 2021, 28, 1129-1136.	1.3	4
17	In vitro bioactivity and antibacterial performances of atmospheric plasma sprayed c-axis preferential oriented hydroxyapatite coatings. Surface and Coatings Technology, 2021, 417, 127209.	2.2	9
18	Microstructure and Wear Behavior of Cold-Sprayed Cu-BNNSs Composite Coating. Journal of Thermal Spray Technology, 2021, 30, 1482-1492.	1.6	13

#	Article	IF	Citations
19	Novel autoantibodies to the \hat{l}^2 -cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. Journal of Autoimmunity, 2021, 122, 102677.	3.0	11
20	An attempt to improve cavitation erosion resistance of UHMWPE coatings through enhancing thermal conductivity via the incorporation of copper frames. Surface and Coatings Technology, 2021, 425, 127705.	2.2	4
21	Bacillus subtilis extracellular polymeric substances conditioning layers inhibit Escherichia coli adhesion to silicon surfaces: A potential candidate for interfacial antifouling additives. Biointerphases, 2021, 16, 011003.	0.6	2
22	In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings. Ultrasonics Sonochemistry, 2020, 60, 104760.	3.8	39
23	Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction. Nature Communications, 2020, 11, 3641.	5.8	70
24	Microscopic visualization of cell – Cold sprayed bio-coating interfaces: An intermediate layer formed during the culturing mediates the behaviors of the cells. Applied Surface Science, 2020, 529, 147132.	3.1	4
25	An approach for predicting intracrystalline diffusivities and adsorption entropies in nanoporous crystalline materials. AICHE Journal, 2020, 66, e16991.	1.8	6
26	Dual Antifouling Mechanisms Induced by Cupric Ions and Needle-Like Alumina in Arc-Sprayed Composite Coatings. Journal of Thermal Spray Technology, 2020, 29, 1784-1791.	1.6	4
27	Advanced electrochemical treatment of real biotreated petrochemical wastewater by boron doped diamond anode: performance, kinetics, and degradation mechanism. Water Science and Technology, 2020, 82, 773-786.	1.2	6
28	Control of Surface Barriers in Mass Transfer to Modulate Methanolâ€toâ€Olefins Reaction over SAPOâ€34 Zeolites. Angewandte Chemie, 2020, 132, 22129-22132.	1.6	14
29	Control of Surface Barriers in Mass Transfer to Modulate Methanolâ€toâ€Olefins Reaction over SAPOâ€34 Zeolites. Angewandte Chemie - International Edition, 2020, 59, 21945-21948.	7.2	37
30	Effect of Chlorella vulgaris Biofilm Adhesion on Electrochemical Behaviors of Wire Arc-Sprayed Aluminum Coatings. Journal of Thermal Spray Technology, 2020, 29, 1991-2000.	1.6	3
31	Friction and Wear Behaviors of Reduced Graphene Oxide- and Carbon Nanotube-Reinforced Hydroxyapatite Bioceramics. Frontiers in Materials, 2020, 7, .	1.2	5
32	Effect of cavitation on corrosion behavior of HVOF-sprayed WC-10Co4Cr coating with post-sealing in artificial seawater. Surface and Coatings Technology, 2020, 397, 126012.	2.2	26
33	Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances. Journal of Thermal Spray Technology, 2020, 29, 1172-1182.	1.6	9
34	Efficient coating fabrication of onion-like carbon nanoparticles via aerosol deposition. Particuology, 2020, 53, 58-62.	2.0	4
35	Simultaneous Evaluation of Reaction and Diffusion over Molecular Sieves for Shape-Selective Catalysis. ACS Catalysis, 2020, 10, 8727-8735.	5.5	32
36	Aluminum-polyethylene composite coatings with self-sealing induced anti-corrosion performances. Journal of Materials Processing Technology, 2020, 282, 116642.	3.1	13

#	Article	IF	CITATIONS
37	Loading of Zn/ZnO particles in the precursor feedstock affects the characteristics of liquid plasma sprayed nano-ZnO coatings for photocatalytic applications. Nanotechnology, 2020, 31, 185301.	1.3	5
38	Kinetic modeling of methanol to olefins process over SAPOâ€34 catalyst based on the dualâ€cycle reaction mechanism. AICHE Journal, 2019, 65, 662-674.	1.8	26
39	Study of the coke distribution in MTO fluidized bed reactor with MPâ€PIC approach. Canadian Journal of Chemical Engineering, 2019, 97, 500-510.	0.9	19
40	Onion-like carbon-modified TiO2 coating by suspension plasma spray with enhanced photocatalytic performances. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	10
41	New Structural Carbons via Industrial Gas Explosion for Hybrid Cathodes in Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 12948-12954.	3.2	5
42	Preadsorption of Serum Proteins Regulates Bacterial Infections and Subsequent Macrophage Phagocytosis on Biomaterial Surfaces. ACS Applied Bio Materials, 2019, 2, 5957-5964.	2.3	2
43	A Comparative Study of Cavitation Erosion Resistance of Several HVOF-Sprayed Coatings in Deionized Water and Artificial Seawater. Journal of Thermal Spray Technology, 2019, 28, 1060-1071.	1.6	28
44	Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials. Communications Chemistry, 2019, 2, .	2.0	58
45	Flame sprayed environmentally friendly high density polyethylene (HDPE)–capsaicin composite coatings for marine antifouling applications. Materials Letters, 2019, 238, 46-50.	1.3	34
46	Study of Catalyst Coke Distribution Based on Population Balance Theory: Application to Methanol to Olefins Process. AICHE Journal, 2019, 65, 1149-1161.	1.8	10
47	Cored-wire arc spray fabrication of novel aluminium-copper coatings for anti-corrosion/fouling hybrid performances. Surface and Coatings Technology, 2019, 357, 794-801.	2.2	23
48	Corrosion and Algal Adhesion Behaviors of HVOF-Sprayed Fe-Based Amorphous Coatings for Marine Applications. Journal of Thermal Spray Technology, 2019, 28, 283-290.	1.6	13
49	Efficient suspension plasma spray fabrication of black titanium dioxide coatings with visible light absorption performances. Ceramics International, 2019, 45, 930-935.	2.3	16
50	Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying. Applied Surface Science, 2018, 439, 60-65.	3.1	62
51	Functionalizing aluminum substrata by quaternary ammonium for antifouling performances. Applied Surface Science, 2018, 440, 300-307.	3.1	23
52	Tribocorrosion behaviours of cold-sprayed diamond–Cu composite coatings in artificial sea water. Surface Engineering, 2018, 34, 392-398.	1.1	6
53	Participation of copper ions in formation of alginate conditioning layer: Evolved structure and regulated microbial adhesion. Colloids and Surfaces B: Biointerfaces, 2018, 162, 220-227.	2.5	15
54	Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications. Journal of Thermal Spray Technology, 2018, 27, 98-105.	1.6	6

#	Article	IF	Citations
55	Numerical and Experimental Investigation on Bonding Behavior of Cold Sprayed Porous WC-17Co Particles onto Different Substrates. Coatings, 2018, 8, 367.	1.2	5
56	Hollow Plasma-Sprayed Spherical Nanostructured Titania Feedstock for Photocatalytic Applications. Journal of Thermal Spray Technology, 2018, 27, 1532-1541.	1.6	4
57	Automatic Robot Trajectory for Thermal-Sprayed Complex Surfaces. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	6
58	Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases, 2018, 13, 060801.	0.6	130
59	Enhanced Lubricant Property of Flame-Sprayed Aluminum Coatings Additivated by Reduced Graphene Oxide Nanosheets. Journal of Thermal Spray Technology, 2018, 27, 1643-1651.	1.6	8
60	Highly specific monoclonal antibodies for allosteric inhibition and immunodetection of the human pancreatic zinc transporter ZnT8. Journal of Biological Chemistry, 2018, 293, 16206-16216.	1.6	11
61	Adsorptionâ€associated orientational changes of immunoglobulin G and regulated phagocytosis of <i>Staphylococcus epidermidis</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 2838-2849.	2.1	4
62	Cold-Sprayed Aluminum-Silica Composite Coatings Enhance Antiwear/Anticorrosion Performances of AZ31 Magnesium Alloy. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.0	3
63	Fabrication of nanodiamond reinforced aluminum composite coatings by flame spraying for marine applications. Materials Today Communications, 2018, 17, 46-52.	0.9	23
64	Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae. Biochemical Engineering Journal, 2018, 139, 25-32.	1.8	16
65	Defined hydrodynamic shear stresses influence the adhesion behaviors of marine Bacillus sp. on stainless steel in artificial seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 503-508.	2.3	7
66	Fe-based amorphous coating with high corrosion and wear resistance. Surface Engineering, 2017, 33, 56-62.	1.1	55
67	Liquid flame spray fabrication of polyimide-copper coatings for antifouling applications. Materials Letters, 2017, 190, 217-220.	1.3	13
68	Incorporation of Copper Enhances the Anti-Ageing Property of Flame-Sprayed High-Density Polyethylene Coatings. Journal of Thermal Spray Technology, 2017, 26, 409-416.	1.6	3
69	Colonization of Bacteria on the Surfaces of Cold-Sprayed Copper Coatings Alters Their Electrochemical Behaviors. Journal of Thermal Spray Technology, 2017, 26, 687-694.	1.6	4
70	Developing titania-hydroxyapatite-reduced graphene oxide nanocomposite coatings by liquid flame spray deposition for photocatalytic applications. Journal of the European Ceramic Society, 2017, 37, 3705-3711.	2.8	24
71	Construction of WO3 coatings with micro-nano hybrid structures by liquid precursor flame spray for enhanced sensing performances to sub-ppm ozone. Materials Letters, 2017, 205, 106-109.	1.3	13
72	Developing polyimide-copper antifouling coatings with capsule structures for sustainable release of copper. Materials and Design, 2017, 130, 285-293.	3.3	53

#	Article	IF	Citations
73	Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior. Surface and Coatings Technology, 2017, 310, 207-213.	2.2	25
74	Flame spray fabrication of polyethylene-Cu composite coatings with enwrapped structures: A new route for constructing antifouling layers. Surface and Coatings Technology, 2017, 309, 872-879.	2.2	28
75	Electron Microscopy Visualization of Vitronectin Adsorbed on COOH and NH ₂ Functionalized Surfaces: Distinctive Spatial Alignment and Regulated Cellular Responses. Advanced Materials Interfaces, 2017, 4, 1700958.	1.9	10
76	Room-temperature deposition of hydroxyapatite/antibiotic composite coatings by vacuum cold spraying for antibacterial applications. Surface and Coatings Technology, 2017, 330, 87-91.	2.2	30
77	Mass-producible hydrophobic perfluoroalkoxy/nano-silver coatings by suspension flame spraying for antifouling and drag reduction applications. Surface and Coatings Technology, 2017, 328, 115-120.	2.2	26
78	Synthesis and Vacuum Cold Spray Deposition of Biofunctionalized Nanodiamond/Hydroxyapatite Nanocomposite for Biomedical Applications. Advanced Engineering Materials, 2017, 19, 1700363.	1.6	8
79	Liquid flame spray fabrication of WO3-reduced graphene oxide nanocomposites for enhanced O3-sensing performances. Ceramics International, 2017, 43, 13185-13192.	2.3	21
80	Superhydrophobic nanocoatings prepared by a novel vacuum cold spray process. Surface and Coatings Technology, 2017, 325, 52-57.	2.2	22
81	Autoclaving-induced in-situ grown alumina on arc-sprayed aluminum coatings: Multiscaled topography facilitates antifouling performances. Surface and Coatings Technology, 2017, 309, 295-300.	2.2	15
82	Mg2+/Ca2+ promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater. Colloids and Surfaces B: Biointerfaces, 2016, 146, 289-295.	2.5	64
83	Single-stranded structure of alginate and its conformation evolvement after an interaction with calcium ions as revealed by electron microscopy. RSC Advances, 2016, 6, 114779-114782.	1.7	23
84	Ti3AlC2 coatings deposited by liquid plasma spraying. Surface and Coatings Technology, 2016, 299, 123-128.	2.2	23
85	Inhibited grain growth in hydroxyapatite–graphene nanocomposites during high temperature treatment and their enhanced mechanical properties. Ceramics International, 2016, 42, 11248-11255.	2.3	35
86	Developing transparent copper-doped diamond-like carbon films for marine antifouling applications. Diamond and Related Materials, 2016, 69, 144-151.	1.8	38
87	Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings. Colloids and Surfaces B: Biointerfaces, 2016, 145, 688-694.	2.5	31
88	Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces. Applied Surface Science, 2016, 388, 385-391.	3.1	11
89	Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 19-25.	2.3	45
90	Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm. Materials Chemistry and Physics, 2016, 173, 62-69.	2.0	33

#	Article	IF	Citations
91	Biomedical titanium alloys with Young's moduli close to that of cortical bone. International Journal of Energy Production and Management, 2016, 3, 173-185.	1.9	241
92	Improving the wear resistance of HVOF sprayed WC-Co coatings by adding submicron-sized WC particles at the splats' interfaces. Surface and Coatings Technology, 2016, 285, 17-23.	2.2	75
93	Impact-induced bonding and boundary amorphization of TiN ceramic particles during room temperature vacuum cold spray deposition. Ceramics International, 2016, 42, 1640-1647.	2.3	23
94	Deposition of porous nano-WO3 coatings with tunable grain shapes by liquid plasma spraying for gas-sensing applications. Materials Letters, 2015, 141, 100-103.	1.3	19
95	Hydroxyapatite nucleated and grown on nano titania particles enhances recruitment of Escherichia coli for subsequent photocatalytic elimination. Materials Chemistry and Physics, 2015, 151, 364-371.	2.0	6
96	Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings. Applied Surface Science, 2015, 332, 89-96.	3.1	22
97	Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications. Journal of Thermal Spray Technology, 2015, 24, 1213-1220.	1.6	13
98	Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification. Applied Surface Science, 2015, 356, 639-644.	3.1	59
99	Microstructure and gas sensing properties of solution precursor plasma-sprayed zinc oxide coatings. Materials Research Bulletin, 2015, 63, 67-71.	2.7	30
100	Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-Corrosion and Wear Performances. Journal of Thermal Spray Technology, 2014, 23, 676-683.	1.6	41
101	Nanostructural Characteristics of Vacuum Cold-Sprayed Hydroxyapatite/Graphene-Nanosheet Coatings for Biomedical Applications. Journal of Thermal Spray Technology, 2014, 23, 1149-1156.	1.6	32
102	Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon, 2014, 67, 250-259.	5 . 4	160
103	Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications. Applied Surface Science, 2014, 311, 864-869.	3.1	116
104	Deposition, Characterization, and Enhanced Adherence of Escherichia coli Bacteria on Flame-Sprayed Photocatalytic Titania-Hydroxyapatite Coatings. Journal of Thermal Spray Technology, 2013, 22, 1053-1062.	1.6	23
105	Decarburization mechanisms of WC–Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization. Materials Chemistry and Physics, 2013, 142, 165-171.	2.0	70
106	Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. Journal of Materials Chemistry B, 2013, 1, 1826.	2.9	164
107	Microstructure and anti―wear and corrosion performances of novel UHMWPE/grapheneâ€nanosheet composite coatings deposited by flame spraying. Polymers for Advanced Technologies, 2013, 24, 888-894.	1.6	18
108	Fabrication and characterization of hybrid micro/nano-structured hydrophilic titania coatings deposited by suspension flame spraying. Applied Surface Science, 2012, 258, 6672-6678.	3.1	22

#	Article	IF	Citations
109	Quantitative evaluation of the decarburization and microstructure evolution of WC–Co during plasma spraying. Surface and Coatings Technology, 2012, 206, 4068-4074.	2.2	48
110	Structural Studies and the Assembly of the Heptameric Post-translational Translocon Complex. Journal of Biological Chemistry, 2011, 286, 2956-2965.	1.6	35
111	Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO Journal, 2010, 29, 2037-2047.	3.5	38
112	Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10872-10877.	3.3	69
113	Crystal Structure of the Caenorhabditis elegans Apoptosome Reveals an Octameric Assembly of CED-4. Cell, 2010, 141, 446-457.	13.5	154
114	Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6945-6949.	3.3	56
115	Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure, 2009, 17, 1377-1385.	1.6	65
116	Cryoelectron Microscopy Structure of Purified \hat{I}^3 -Secretase at $12\hat{A}$ Resolution. Journal of Molecular Biology, 2009, 385, 642-652.	2.0	104
117	Structure of the Oligosaccharyl Transferase Complex at 12 Ã Resolution. Structure, 2008, 16, 432-440.	1.6	45
118	Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite. Journal of Biomedical Materials Research - Part A, 2007, 82A, 296-303.	2.1	39
119	Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: Effect of nanostructures at interface and crack propagation phenomenon during bending. Engineering Fracture Mechanics, 2007, 74, 1894-1903.	2.0	56
120	BIOCHEMICAL AND STRUCTURAL STUDIES OF THE OLIGOSACCHARYL TRANSFERASE COMPLEX. FASEB Journal, 2007, 21, A1021.	0.2	0
121	Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. Surface and Coatings Technology, 2006, 201, 2147-2154.	2.2	28
122	Effect of Steam Treatment During Plasma Spraying on the Microstructure of Hydroxyapatite Splats and Coatings. Journal of Thermal Spray Technology, 2006, 15, 610-616.	1.6	16
123	Biocompatible Nanostructured High-Velocity Oxyfuel Sprayed Titania Coating: Deposition, Characterization, and Mechanical Properties. Journal of Thermal Spray Technology, 2006, 15, 623-627.	1.6	24
124	In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni-Ti reaction agent. Journal of Biomedical Materials Research - Part A, 2006, 78A, 316-323.	2.1	17
125	Microstructure modifications and phase transformation in plasma-sprayed WC–Co coatings following post-spray spark plasma sintering. Surface and Coatings Technology, 2005, 194, 96-102.	2.2	47
126	HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 181-187.	2.6	95

#	Article	IF	Citations
127	Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings. Biomaterials, 2004, 25, 1177-1186.	5.7	59
128	Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization. Biomaterials, 2004, 25, 3463-3471.	5.7	48
129	Restoring WC in plasma sprayed WC–Co coatings through spark plasma sintering (SPS). Surface and Coatings Technology, 2004, 182, 308-317.	2.2	38
130	Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Surface and Coatings Technology, 2004, 182, 227-236.	2.2	46
131	Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. Acta Materialia, 2004, 52, 445-453.	3.8	72
132	Effect of nano-crystallization of high velocity oxy-fuel-sprayed amorphous NiCrBSi alloy on properties of the coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2000-2004.	0.9	20
133	In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials, 2003, 24, 723-735.	5.7	41
134	Characterization of the bone-like apatite precipitated on high velocity oxy-fuel (HVOF) sprayed calcium phosphate deposits. Biomaterials, 2003, 24, 769-775.	5.7	43
135	Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials, 2003, 24, 949-957.	5.7	97
136	Processing–microstructure–property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials, 2003, 24, 2233-2243.	5.7	38
137	Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials, 2003, 24, 2695-2705.	5.7	111
138	Nanobioceramics: Synthesis, Characterization, and Applications. , 2002, 4936, 35.		0
139	Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 2002, 23, 85-91.	5.7	172
140	Properties of heat-treated calcium phosphate coatings deposited by high-velocity oxy-fuel (HVOF) spray. Biomaterials, 2002, 23, 2105-2112.	5.7	70
141	Young's modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surface and Coatings Technology, 2002, 155, 21-32.	2.2	75
142	Effect of the powders' melting state on the properties of HVOF sprayed hydroxyapatite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 293, 71-80.	2.6	41
143	Effect of Gas Conditions on HVOF Flame and Properties of WC-Co Coatings. Materials and Manufacturing Processes, 1999, 14, 383-395.	2.7	29
144	Superhydrophobicity through Coatings Prepared by Chemical Methods. , 0, , .		7

#	Article	IF	CITATIONS
145	Suspension Flame Spray Construction of Porous Polycaprolactone/Hydroxyapatite Coatings for Marine Ecological Remediation. Journal of Thermal Spray Technology, 0, , .	1.6	O
146	Superhydrophobic Surface on Arc-Sprayed Aluminum Coating Via Fluorinated Polyurethane Modification: Preparation and Application in Corrosion Protection. Journal of Thermal Spray Technology, 0, , .	1.6	1
147	Exploring the Interâ€and Intraâ€crystal Diversity of Surface Barriers in Zeolites on Mass Transport by Using Superâ€Resolution Microimaging of Timeâ€Resolved Guest Profiles. Angewandte Chemie, 0, , .	1.6	1