W Lee Kraus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600042/publications.pdf Version: 2024-02-01

		17405	18075
135	15,472	63	120
papers	citations	h-index	g-index
142	142	142	17650
all docs	docs citations	times ranked	citing authors

WILEE KDALLS

#	Article	IF	CITATIONS
1	New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Reviews Molecular Cell Biology, 2012, 13, 411-424.	16.1	995
2	The PARP Side of the Nucleus: Molecular Actions, Physiological Outcomes, and Clinical Targets. Molecular Cell, 2010, 39, 8-24.	4.5	738
3	Poly(ADP-ribosyl)ation by PARP-1: `PAR-laying' NAD+ into a nuclear signal. Genes and Development, 2005, 19, 1951-1967.	2.7	705
4	On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes and Development, 2012, 26, 417-432.	2.7	593
5	PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes and Development, 2017, 31, 101-126.	2.7	524
6	NAD+-Dependent Modulation of Chromatin Structure and Transcription by Nucleosome Binding Properties of PARP-1. Cell, 2004, 119, 803-814.	13.5	487
7	PARP Goes Transcription. Cell, 2003, 113, 677-683.	13.5	478
8	A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in Breast Cancer Cells. Cell, 2011, 145, 622-634.	13.5	458
9	Enhancer transcripts mark active estrogen receptor binding sites. Genome Research, 2013, 23, 1210-1223.	2.4	410
10	Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Current Opinion in Cell Biology, 2008, 20, 294-302.	2.6	369
11	From Discovery to Function: The Expanding Roles of Long NonCoding RNAs in Physiology and Disease. Endocrine Reviews, 2015, 36, 25-64.	8.9	351
12	Reciprocal Binding of PARP-1 and Histone H1 at Promoters Specifies Transcriptional Outcomes. Science, 2008, 319, 819-821.	6.0	350
13	Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science, 2016, 353, 45-50.	6.0	302
14	Signaling Pathways Differentially Affect RNA Polymerase II Initiation, Pausing, and Elongation Rate in Cells. Molecular Cell, 2013, 50, 212-222.	4.5	300
15	PARP-1 Regulates Chromatin Structure and Transcription through a KDM5B-Dependent Pathway. Molecular Cell, 2010, 39, 736-749.	4.5	276
16	SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signaling to the control of cellular functions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1666-1675.	1.1	233
17	PARP-1 and gene regulation: Progress and puzzles. Molecular Aspects of Medicine, 2013, 34, 1109-1123.	2.7	217
18	Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates. Molecular and Cellular Biology, 1999, 19, 8123-8135.	1.1	215

#	Article	IF	CITATIONS
19	Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3611-3616.	3.3	209
20	Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. ELife, 2014, 3, e02200.	2.8	205
21	Enzymes in the NAD+ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters. Journal of Biological Chemistry, 2009, 284, 20408-20417.	1.6	200
22	Identification of active transcriptional regulatory elements from GRO-seq data. Nature Methods, 2015, 12, 433-438.	9.0	198
23	Acetylation of Estrogen Receptor α by p300 at Lysines 266 and 268 Enhances the Deoxyribonucleic Acid Binding and Transactivation Activities of the Receptor. Molecular Endocrinology, 2006, 20, 1479-1493.	3.7	186
24	Genome-Wide Analysis of Estrogen Receptor α DNA Binding and Tethering Mechanisms Identifies Runx1 as a Novel Tethering Factor in Receptor-Mediated Transcriptional Activation. Molecular and Cellular Biology, 2010, 30, 3943-3955.	1.1	183
25	Metabolic regulation of transcription through compartmentalized NAD ⁺ biosynthesis. Science, 2018, 360, .	6.0	182
26	Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells. Molecular Cell, 2015, 59, 698-711.	4.5	179
27	Genomic Analyses of Transcription Factor Binding, Histone Acetylation, and Gene Expression Reveal Mechanistically Distinct Classes of Estrogen-Regulated Promoters. Molecular and Cellular Biology, 2007, 27, 5090-5104.	1.1	178
28	Specific Contributions of Histone Tails and their Acetylation to the Mechanical Stability of Nucleosomes. Journal of Molecular Biology, 2005, 346, 135-146.	2.0	177
29	Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21. Molecular Cell, 2019, 75, 1270-1285.e14.	4.5	160
30	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	2.2	150
31	The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes and Development, 2010, 24, 21-32.	2.7	148
32	PARPs and ADP-Ribosylation: 50 Years $\hat{a} \in \$ and Counting. Molecular Cell, 2015, 58, 902-910.	4.5	141
33	The Zn3 Domain of Human Poly(ADP-ribose) Polymerase-1 (PARP-1) Functions in Both DNA-dependent Poly(ADP-ribose) Synthesis Activity and Chromatin Compaction. Journal of Biological Chemistry, 2010, 285, 18877-18887.	1.6	140
34	Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Research, 2018, 28, 159-170.	2.4	137
35	The DNA Binding and Catalytic Domains of Poly(ADP-Ribose) Polymerase 1 Cooperate in the Regulation of Chromatin Structure and Transcription. Molecular and Cellular Biology, 2007, 27, 7475-7485.	1.1	131
36	Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO Journal, 2006, 25, 4490-4502.	3.5	126

#	Article	IF	CITATIONS
37	Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends in Biochemical Sciences, 2015, 40, 516-525.	3.7	123
38	TNFα Signaling Exposes Latent Estrogen Receptor Binding Sites to Alter the Breast Cancer Cell Transcriptome. Molecular Cell, 2015, 58, 21-34.	4.5	123
39	Estrogen-Regulated Gene Networks in Human Breast Cancer Cells: Involvement of E2F1 in the Regulation of Cell Proliferation. Molecular Endocrinology, 2007, 21, 2112-2123.	3.7	112
40	Clickable NAD Analogues for Labeling Substrate Proteins of Poly(ADP-ribose) Polymerases. Journal of the American Chemical Society, 2010, 132, 9363-9372.	6.6	112
41	New Facets in the Regulation of Gene Expression by ADP-Ribosylation and Poly(ADP-ribose) Polymerases. Chemical Reviews, 2015, 115, 2453-2481.	23.0	112
42	Genome-Wide Analysis Reveals PADI4 Cooperates with Elk-1 to Activate c-Fos Expression in Breast Cancer Cells. PLoS Genetics, 2011, 7, e1002112.	1.5	107
43	The Phosphorylation Status of a Cyclic AMP-Responsive Activator Is Modulated via a Chromatin-Dependent Mechanism. Molecular and Cellular Biology, 2000, 20, 1596-1603.	1.1	103
44	Global Analysis of Transcriptional Regulation by Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase in MCF-7 Human Breast Cancer Cells. Journal of Biological Chemistry, 2009, 284, 33926-33938.	1.6	102
45	Poly(ADP-ribose) Polymerase 1 Is Inhibited by a Histone H2A Variant, MacroH2A, and Contributes to Silencing of the Inactive X Chromosome. Journal of Biological Chemistry, 2007, 282, 12851-12859.	1.6	100
46	Catalytic-Independent Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci. Molecular Cell, 2017, 65, 589-603.e9.	4.5	97
47	A Global View of Transcriptional Regulation by Nuclear Receptors: Gene Expression, Factor Localization, and DNA Sequence Analysis. Nuclear Receptor Signaling, 2008, 6, nrs.06005.	1.0	96
48	Regulation of Poly(ADP-ribose) Polymerase-1-dependent Gene Expression through Promoter-directed Recruitment of a Nuclear NAD+ Synthase. Journal of Biological Chemistry, 2012, 287, 12405-12416.	1.6	96
49	p300 Forms a Stable, Template-Committed Complex with Chromatin: Role for the Bromodomain. Molecular and Cellular Biology, 2001, 21, 3876-3887.	1.1	93
50	Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Experimental and Molecular Medicine, 2021, 53, 42-51.	3.2	93
51	PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes and Development, 2020, 34, 302-320.	2.7	91
52	PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPÎ ² and Modulating Its Transcriptional Activity. Molecular Cell, 2017, 65, 260-271.	4.5	88
53	Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Biochemistry, 2017, 56, 6305-6316.	1.2	87
54	PARP Inhibitors for Cancer Therapy. Cell, 2017, 169, 183.	13.5	85

#	Article	IF	CITATIONS
55	Hormone-regulated transcriptomes: Lessons learned from estrogen signaling pathways in breast cancer cells. Molecular and Cellular Endocrinology, 2014, 382, 652-664.	1.6	81
56	Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates. Molecular and Cellular Biology, 2003, 23, 335-348.	1.1	80
57	The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Molecular Cell, 2022, 82, 2315-2334.	4.5	80
58	Genomic Analyses of Hormone Signaling and Gene Regulation. Annual Review of Physiology, 2010, 72, 191-218.	5.6	78
59	A Novel Arabidopsis Acetyltransferase Interacts with the Geminivirus Movement Protein NSP. Plant Cell, 2003, 15, 1605-1618.	3.1	77
60	Postrecruitment Regulation of RNA Polymerase II Directs Rapid Signaling Responses at the Promoters of Estrogen Target Genes. Molecular and Cellular Biology, 2009, 29, 1123-1133.	1.1	77
61	Multiple facets of the unique histone variant macroH2A: From genomics to cell biology. Cell Cycle, 2010, 9, 2568-2574.	1.3	76
62	Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells. Trends in Biochemical Sciences, 2020, 45, 858-873.	3.7	76
63	Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochemical and Biophysical Research Communications, 2004, 317, 259-264.	1.0	70
64	Nuclear receptors, coactivators and chromatin: new approaches, new insights. Trends in Endocrinology and Metabolism, 2001, 12, 191-197.	3.1	66
65	Minireview: Long Noncoding RNAs: New "Links―Between Gene Expression and Cellular Outcomes in Endocrinology. Molecular Endocrinology, 2013, 27, 1390-1402.	3.7	66
66	Nuclear receptor-dependent transcription with chromatin. FEBS Journal, 2002, 269, 2275-2283.	0.2	65
67	Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nature Ecology and Evolution, 2018, 2, 537-548.	3.4	65
68	MYBBP1a is a Novel Repressor of NF-κB. Journal of Molecular Biology, 2007, 366, 725-736.	2.0	64
69	Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 559-564.	3.3	63
70	Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes. BMC Genomics, 2018, 19, 150.	1.2	62
71	Selective Recognition of Distinct Classes of Coactivators by a Ligand-Inducible Activation Domain. Molecular Cell, 2004, 13, 725-738.	4.5	57
72	groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics, 2015, 16, 222.	1.2	57

#	Article	IF	CITATIONS
73	p300-Mediated Tax Transactivation from Recombinant Chromatin: Histone Tail Deletion Mimics Coactivator Function. Molecular and Cellular Biology, 2002, 22, 127-137.	1.1	56
74	PARPs in lipid metabolism and related diseases. Progress in Lipid Research, 2021, 84, 101117.	5.3	52
75	Linking the Aryl Hydrocarbon Receptor with Altered DNA Methylation Patterns and Developmentally Induced Aberrant Antiviral CD8+ T Cell Responses. Journal of Immunology, 2015, 194, 4446-4457.	0.4	51
76	Dynamic assembly and activation of estrogen receptor α enhancers through coregulator switching. Genes and Development, 2017, 31, 1535-1548.	2.7	50
77	The Role of the C-terminal Extension (CTE) of the Estrogen Receptor α and β DNA Binding Domain in DNA Binding and Interaction with HMGB. Journal of Biological Chemistry, 2004, 279, 14763-14771.	1.6	49
78	Transcriptional activation by nuclear receptors. Essays in Biochemistry, 2004, 40, 73-88.	2.1	46
79	Multiple Sequence-Specific DNA-Binding Proteins Mediate Estrogen Receptor Signaling through a Tethering Pathway. Molecular Endocrinology, 2011, 25, 564-574.	3.7	45
80	MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells, 2021, 10, 313.	1.8	44
81	Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell, 2021, 184, 4531-4546.e26.	13.5	42
82	A Role for BAF57 in Cell Cycle–Dependent Transcriptional Regulation by the SWI/SNF Chromatin Remodeling Complex. Cancer Research, 2010, 70, 4402-4411.	0.4	40
83	Chromatin exposes intrinsic differences in the transcriptional activities of estrogen receptors alpha and beta. EMBO Journal, 2003, 22, 600-611.	3.5	39
84	Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNF $\hat{I}\pm$ signaling revealed by integrated genomic analyses. BMC Genomics, 2014, 15, 155.	1.2	39
85	Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends in Biochemical Sciences, 2021, 46, 138-153.	3.7	39
86	Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. ELife, 2021, 10, .	2.8	39
87	miR-200 Regulates Endometrial Development During Early Pregnancy. Molecular Endocrinology, 2016, 30, 977-987.	3.7	38
88	Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis. Molecular Cell, 2020, 79, 934-949.e14.	4.5	38
89	Histone H1 Represses Estrogen Receptor α Transcriptional Activity by Selectively Inhibiting Receptor-Mediated Transcription Initiation. Molecular and Cellular Biology, 2002, 22, 2463-2471.	1.1	35
90	Transcriptional Activation by Thyroid Hormone Receptor-Î ² Involves Chromatin Remodeling, Histone Acetylation, and Synergistic Stimulation by p300 and Steroid Receptor Coactivators. Molecular Endocrinology, 2003, 17, 908-922.	3.7	31

#	Article	IF	CITATIONS
91	PARP inhibitors and the treatment of breast cancer: beyond BRCA1/2?. Breast Cancer Research, 2009, 11, 111.	2.2	30
92	Transcriptome signature identifies distinct cervical pathways induced in lipopolysaccharide-mediated preterm birthâ€,‡. Biology of Reproduction, 2018, 98, 408-421.	1.2	30
93	New functions for an ancient domain. Nature Structural and Molecular Biology, 2009, 16, 904-907.	3.6	29
94	No Driver behind the Wheel? Targeting Transcription in Cancer. Cell, 2015, 163, 28-30.	13.5	29
95	Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers. Methods in Molecular Biology, 2017, 1468, 121-138.	0.4	27
96	PARPs and ADP-ribosylation: 60 years on. Genes and Development, 2020, 34, 251-253.	2.7	25
97	SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Scientific Reports, 2016, 6, 20179.	1.6	24
98	Promoter Cleavage: A Topoll \hat{I}^2 and PARP-1 Collaboration. Cell, 2006, 125, 1225-1227.	13.5	22
99	ADP-Ribosylation Levels and Patterns Correlate with Gene Expression and Clinical Outcomes in Ovarian Cancers. Molecular Cancer Therapeutics, 2020, 19, 282-291.	1.9	20
100	Nuclear ADP-ribosylation drives IFNγ-dependent STAT1α enhancer formation in macrophages. Nature Communications, 2021, 12, 3931.	5.8	20
101	Identification of a Novel Transferable cis Element in the Promoter of an Estrogen-Responsive Gene that Modulates Sensitivity to Hormone and Antihormone. Molecular Endocrinology, 1997, 11, 330-341.	3.7	19
102	Development of a stable dual cellâ€line GFP expression system to study estrogenic endocrine disruptors. Biotechnology and Bioengineering, 2008, 101, 1276-1287.	1.7	19
103	A One and a Two … Expanding Roles for Poly(ADP-Ribose) Polymerases in Metabolism. Cell Metabolism, 2011, 13, 353-355.	7.2	19
104	The Histone Variant MacroH2A1 Regulates Target Gene Expression in Part by Recruiting the Transcriptional Coregulator PELP1. Molecular and Cellular Biology, 2014, 34, 2437-2449.	1.1	18
105	Editorial: Would You Like A Hypothesis With Those Data? Omics and the Age of Discovery Science. Molecular Endocrinology, 2015, 29, 1531-1534.	3.7	18
106	Editorial: Do You See What I See?: Quality, Reliability, and Reproducibility in Biomedical Research. Molecular Endocrinology, 2014, 28, 277-280.	3.7	17
107	Distinct Roles for BET Family Members in Estrogen Receptor \hat{I} ± Enhancer Function and Gene Regulation in Breast Cancer Cells. Molecular Cancer Research, 2019, 17, 2356-2368.	1.5	17
108	Specific Binding of snoRNAs to PARP-1 Promotes NAD ⁺ -Dependent Catalytic Activation. Biochemistry, 2020, 59, 1559-1564.	1.2	17

#	Article	IF	CITATIONS
109	Estrogen Regulates JNK1 Genomic Localization to Control Gene Expression and Cell Growth in Breast Cancer Cells. Molecular Endocrinology, 2012, 26, 736-747.	3.7	16
110	Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
111	Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable―NAD+ Analog. Methods in Molecular Biology, 2017, 1608, 111-135.	0.4	16
112	Visualizing the Histone Code on LSD1. Cell, 2007, 128, 433-434.	13.5	12
113	Small Molecules, Big Effects: A Role for Chromatin-Localized Metabolite Biosynthesis in Gene Regulation. Molecular Cell, 2011, 41, 497-499.	4.5	12
114	Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro. Methods in Molecular Biology, 2018, 1813, 91-108.	0.4	12
115	Development and characterization of new tools for detecting poly(ADP-ribose) in vitro and in vivo. ELife, 2022, 11, .	2.8	12
116	Genome-wide analysis and functional prediction of the estrogen-regulated transcriptional response in the mouse uterusâ€. Biology of Reproduction, 2020, 102, 327-338.	1.2	11
117	PARP-1 Regulates Estrogen-Dependent Gene Expression in Estrogen Receptor α–Positive Breast Cancer Cells. Molecular Cancer Research, 2021, 19, 1688-1698.	1.5	11
118	Mapping ERÎ ² Genomic Binding Sites Reveals Unique Genomic Features and Identifies EBF1 as an ERÎ ² Interactor. PLoS ONE, 2013, 8, e71355.	1.1	11
119	Analysis of estrogen-regulated enhancer RNAs identifies a functional motif required for enhancer assembly and gene expression. Cell Reports, 2022, 39, 110944.	2.9	9
120	Combinatorial Treatment with PARP-1 Inhibitors and Cisplatin Attenuates Cervical Cancer Growth through Fos-Driven Changes in Gene Expression. Molecular Cancer Research, 2022, 20, 1183-1192.	1.5	7
121	A PreSTIGEous use of LncRNAs to predict enhancers. Cell Cycle, 2015, 14, 1619-1620.	1.3	6
122	Multiomics analysis of the NAD ⁺ –PARP1 axis reveals a role for site-specific ADP-ribosylation in splicing in embryonic stem cells. Genes and Development, 2022, 36, 601-617.	2.7	6
123	Activation of estrogen receptor α by raloxifene through an activating protein-1-dependent tethering mechanism in human cervical epithelial cancer cells: A role for c-Jun N-terminal kinase. Molecular and Cellular Endocrinology, 2012, 348, 331-338.	1.6	4
124	PARPs and ADP-Ribosylation Come Into Focus. Molecular Cell, 2015, 58, 901.	4.5	4
125	Total Functional Score of Enhancer Elements Identifies Lineage-Specific Enhancers That Drive Differentiation of Pancreatic Cells. Bioinformatics and Biology Insights, 2020, 14, 117793222093806.	1.0	4
126	Two birds, one stone: Non-canonical therapeutic effects of the PARP inhibitor Talazoparib. Cell Chemical Biology, 2022, 29, 171-173.	2.5	4

#	Article	IF	CITATIONS
127	The Estrogen-Regulated Transcriptome: Rapid, Robust, Extensive, and Transient. Cancer Drug Discovery and Development, 2019, , 95-127.	0.2	3
128	Oncohistone Mutations Occur at Functional Sites of Regulatory ADP-Ribosylation. Cancer Research, 2022, 82, 2361-2377.	0.4	3
129	Characterization of basal and estrogen-regulated antisense transcription in breast cancer cells: Role in regulating sense transcription. Molecular and Cellular Endocrinology, 2020, 506, 110746.	1.6	2
130	Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP. Methods in Molecular Biology, 2018, 1813, 371-387.	0.4	1
131	Come one, come all? Re-evaluating RNA polymerase II pre-initiation complex assembly using single-molecule microscopy. Molecular Cell, 2021, 81, 3443-3445.	4.5	1
132	Editorial: Centennial Celebration – A Focus on Endocrine Disrupting Chemicals… One Hundred Years in the Making. Molecular Endocrinology, 2016, 30, 827-828.	3.7	0
133	Who Put the "A―in ATP? Generation of ATP from ADP-Ribose in the Nucleus for Hormone-Dependent Gene Regulation. Molecular Cell, 2016, 63, 349-351.	4.5	0
134	Nucleolar localization of the RNA helicase DDX21 is associated with decreased survival in advanced-stage endometrioid endometrial cancer. Gynecologic Oncology, 2021, 162, S214.	0.6	0
135	PARP Inhibitors may be Beneficial in a Broader Range of Patients. Oncology & Hematology Review, 2019, 15, 66.	0.2	0