José MarÃ-a Paruelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6599382/publications.pdf

Version: 2024-02-01

121 papers

23,802 citations

41323 49 h-index 20943 115 g-index

123 all docs

123 docs citations

times ranked

123

22327 citing authors

#	Article	IF	CITATIONS
1	The value of the world's ecosystem services and natural capital. Nature, 1997, 387, 253-260.	13.7	15,321
2	How to evaluate models: Observed vs. predicted or predicted vs. observed?. Ecological Modelling, 2008, 216, 316-322.	1.2	643
3	Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 2012, 121, 144-158.	4.6	596
4	ANPP ESTIMATES FROM NDVI FOR THE CENTRAL GRASSLAND REGION OF THE UNITED STATES. Ecology, 1997, 78, 953-958.	1.5	419
5	Pathways of Grazing Effects on Soil Organic Carbon and Nitrogen. Rangeland Ecology and Management, 2010, 63, 109-119.	1.1	308
6	Relative Abundance of Plant Functional Types in Grasslands and Shrublands of North America. , 1996, 6, 1212-1224.		265
7	Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient. Ecosystems, 1999, 2, 64-68.	1.6	264
8	The value of ecosystem services: putting the issues in perspective. Ecological Economics, 1998, 25, 67-72.	2.9	229
9	PATTERNS AND CONTROLS OF PRIMARY PRODUCTION IN THE PATAGONIAN STEPPE: A REMOTE SENSING APPROACH*. Ecology, 2002, 83, 307-319.	1.5	198
10	Land-Use and Land Cover Dynamics in South American Temperate Grasslands. Ecology and Society, 2008, 13, .	1.0	191
11	Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Global Change Biology, 2005, 11, 1101-1117.	4.2	186
12	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70.	2.3	170
13	Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems and Environment, 2006, 116, 197-208.	2.5	150
14	Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. Journal of Arid Environments, 2015, 123, 3-11.	1.2	147
15	Ecosystem responses to changes in plant functional type composition: An example from the Patagonian steppe. Journal of Vegetation Science, 1996, 7, 381-390.	1.1	146
16	Current Distribution of Ecosystem Functional Types in Temperate South America. Ecosystems, 2001, 4, 683-698.	1.6	135
17	Variation of grazingâ€induced vegetation changes across a largeâ€scale productivity gradient. Journal of Vegetation Science, 2014, 25, 8-21.	1.1	132
18	FUNCTIONAL AND STRUCTURAL CONVERGENCE OF TEMPERATE GRASSLAND AND SHRUBLAND ECOSYSTEMS. , 1998, 8, 194-206.		131

#	Article	IF	CITATIONS
19	Regional Patterns of Normalized Difference Vegetation Index in North American Shrublands and Grasslands. Ecology, 1995, 76, 1888-1898.	1.5	128
20	Do Grasslands Have a Memory: Modeling Phytomass Production of a Semiarid South African Grassland. Ecosystems, 2004, 7, 243.	1.6	127
21	Environmental Controls of Primary Production in Agricultural Systems of the Argentine Pampas. Ecosystems, 2002, 5, 0625-0635.	1.6	123
22	Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. Journal of Biogeography, 1998, 25, 721-733.	1.4	116
23	Water Losses in the Patagonian Steppe: A Modelling Approach. Ecology, 1995, 76, 510-520.	1.5	115
24	Identification of current ecosystem functional types in the Iberian Peninsula. Global Ecology and Biogeography, 2006, 15, 200-212.	2.7	106
25	Seasonal Variation in Aboveground Production and Radiation-use Efficiency of Temperate rangelands Estimated through Remote Sensing. Ecosystems, 2006, 9, 357-373.	1.6	100
26	Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochemical Cycles, 2009, 23, .	1.9	100
27	Land Use/Land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote Sensing, 2020, 12, 381.	1.8	94
28	Two decades of Normalized Difference Vegetation Index changes in South America: identifying the imprint of global change. International Journal of Remote Sensing, 2004, 25, 2793-2806.	1.3	90
29	The ecosystem functioning dimension in conservation: insights from remote sensing. Biodiversity and Conservation, 2012, 21, 3287-3305.	1.2	89
30	Long-term Satellite NDVI Data Sets: Evaluating Their Ability to Detect Ecosystem Functional Changes in South America. Sensors, 2008, 8, 5397-5425.	2.1	86
31	Patterns of Production and Precipitation-Use Efficiency of Winter Wheat and Native Grasslands in the Central Great Plains of the United States. Ecosystems, 2000, 3, 344-351.	1.6	83
32	Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Global Change Biology, 2006, 12, 1267-1284.	4.2	79
33	Agricultural expansion in the Semiarid Chaco: Poorly selective contagious advance. Land Use Policy, 2016, 55, 154-165.	2.5	78
34	The relative abundance of three plant functional types in temperate grasslands and shrublands of North and South America: effects of projected climate change. Journal of Biogeography, 2002, 29, 875-888.	1.4	77
35	Native Forests and Agriculture in Salta (Argentina). Journal of Environment and Development, 2011, 20, 251-277.	1.6	75
36	Forest conservation: Remember Gran Chaco. Science, 2017, 355, 465-465.	6.0	75

#	Article	IF	CITATIONS
37	Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant and Soil, 2015, 392, 155-162.	1.8	73
38	Estimation of primary production of subhumid rangelands from remote sensing data. Applied Vegetation Science, 2000, 3, 189-195.	0.9	70
39	Use of Descriptors of Ecosystem Functioning for Monitoring a National Park Network: A Remote Sensing Approach. Environmental Management, 2009, 43, 38-48.	1.2	69
40	Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors, 2010, 10, 1291-1314.	2.1	69
41	Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science, 1996, 7, 599-608.	1.1	68
42	Production as a function of resource availability: Slopes and efficiencies are different. Journal of Vegetation Science, 2005, 16, 351-354.	1.1	68
43	Desertification alters the response of vegetation to changes in precipitation. Journal of Applied Ecology, 2010, 47, 1233-1241.	1.9	68
44	Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Global Ecology and Biogeography, 2004, 13, 385-395.	2.7	65
45	Land use change patterns in the RÃo de la Plata grasslands: The influence of phytogeographic and political boundaries. Agriculture, Ecosystems and Environment, 2009, 134, 287-292.	2.5	65
46	An integrative index of Ecosystem Services provision based on remotely sensed data. Ecological Indicators, 2016, 71, 145-154.	2.6	63
47	LAND USE IMPACTS ON THE NORMALIZED DIFFERENCE VEGETATION INDEX IN TEMPERATE ARGENTINA. , 2003, 13, 616-628.		57
48	How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics. Agriculture, Ecosystems and Environment, 2012, 154, 23-33.	2.5	57
49	Baseline characterization of major Iberian vegetation types based on the NDVI dynamics. Plant Ecology, 2009, 202, 13-29.	0.7	56
50	Estimating Aboveground Plant Biomass Using a Photographic Technique. Journal of Range Management, 2000, 53, 190.	0.3	53
51	Disentangling grazing effects: trampling, defoliation and urine deposition. Applied Vegetation Science, 2016, 19, 557-566.	0.9	53
52	Remote sensing of protected areas to derive baseline vegetation functioning characteristics. Journal of Vegetation Science, 2004, 15, 711-720.	1.1	49
53	Patterns and controls of aboveâ€ground net primary production in meadows of Patagonia. A remote sensing approach. Journal of Vegetation Science, 2012, 23, 114-126.	1.1	49
54	The Influence of Climate, Soils, Weather, and Land Use on Primary Production and Biomass Seasonality in the US Great Plains. Ecosystems, 2006, 9, 934-950.	1.6	48

#	Article	IF	CITATIONS
55	Trait differences between grass species along a climatic gradient in South and North America. Journal of Vegetation Science, 2008, 19, 183-192.	1.1	47
56	Carbon Stocks and Fluxes in Rangelands of the RÃo de la Plata Basin. Rangeland Ecology and Management, 2010, 63, 94-108.	1.1	47
57	Title is missing!. Plant Ecology, 2000, 150, 133-143.	0.7	46
58	Root Systems of Two Patagonian Shrubs: A Quantitative Description Using a Geometrical Method. Journal of Range Management, 1988, 41, 220.	0.3	45
59	Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America. Remote Sensing, 2013, 5, 127-154.	1.8	45
60	Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Doñana, Spain. Remote Sensing of Environment, 2010, 114, 211-220.	4.6	44
61	Range Assessment Using Remote Sensing in Northwest Patagonia (Argentina). Journal of Range Management, 1994, 47, 498.	0.3	40
62	Spatial risk assessment of livestock exposure to pumas in Patagonia, Argentina. Ecography, 2009, 32, 807-817.	2.1	40
63	Assessing the effectiveness of a land zoning policy in the Dry Chaco. The Case of Santiago del Estero, Argentina. Land Use Policy, 2018, 70, 313-321.	2.5	36
64	Opposite changes of whole-soil vs. pools C : N ratios: a case of Simpson's paradox with implications on nitrogen cycling. Global Change Biology, 2006, 12, 804-809.	4.2	34
65	Biozones: Vegetation Units Defined by Functional Characters Identifiable with the Aid of Satellite Sensor Images. Global Ecology and Biogeography Letters, 1992, 2, 82.	0.6	33
66	Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 238-249.	4.9	32
67	Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem. Oecologia, 2011, 165, 501-510.	0.9	31
68	Temporal and spatial patterns of ecosystem functioning in protected arid areas in southeastern Spain. Applied Vegetation Science, 2005, 8, 93-102.	0.9	30
69	Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. Journal of Plant Physiology, 2016, 199, 100-110.	1.6	30
70	Demography, population dynamics and sustainability of the Patagonian sheep flocks. Agricultural Systems, 2006, 87, 123-146.	3.2	27
71	Environmental controls of NDVI dynamics in Patagonia based on NOAA-AVHRR satellite data. Journal of Vegetation Science, 1993, 4, 425-428.	1.1	26
72	Desertification and ecosystem services supply: The case of the Arid Chaco of South America. Journal of Arid Environments, 2018, 159, 66-74.	1,2	26

#	Article	IF	CITATIONS
73	Grasslands of Uruguay: classification based on vegetation plots. Phytocoenologia, 2019, 49, 211-229.	1.2	26
74	Understanding the longâ€term spatial dynamics of a semiarid grassâ€shrub steppe through inverse parameterization for simulation models. Oikos, 2012, 121, 848-861.	1.2	24
75	Spatial and temporal patterns of herbaceous primary production in semiâ€arid shrublands: a remote sensing approach. Journal of Vegetation Science, 2016, 27, 716-727.	1.1	24
76	Interannual variability of wheat yield in the Argentine Pampas during the 20th century. Agriculture, Ecosystems and Environment, 2004, 103, 177-190.	2.5	23
77	Agricultural impacts on ecosystem functioning in temperate areas of North and South America. Global and Planetary Change, 2005, 47, 170-180.	1.6	23
78	Spatial and Temporal Variability in Aboveground Net Primary Production of Uruguayan Grasslands. Rangeland Ecology and Management, 2014, 67, 30-38.	1.1	23
79	Trends in the surface vegetation dynamics of the national parks of Spain as observed by satellite sensors. Applied Vegetation Science, 2008, 11, 431-440.	0.9	22
80	Silvopastoral systems of the Chaco forests: Effects of trees on grass growth. Journal of Arid Environments, 2018, 156, 87-95.	1.2	22
81	Combined effects of grazing management and climate on semiâ€arid steppes: Hysteresis dynamics prevent recovery of degraded rangelands. Journal of Applied Ecology, 2019, 56, 2155-2165.	1.9	22
82	Grassland afforestation impact on primary productivity: a remote sensing approach. Applied Vegetation Science, 2013, 16, 390-403.	0.9	21
83	A complex network of interactions controls coexistence and relative abundances in Patagonian grassâ€shrub steppes. Journal of Ecology, 2014, 102, 776-788.	1.9	20
84	Is forest or Ecological Transition taking place? Evidence for the Semiarid Chaco in Argentina. Journal of Arid Environments, 2015, 123, 21-30.	1.2	20
85	Remote Sensing in Ecology and Conservation: three years on. Remote Sensing in Ecology and Conservation, 2017, 3, 53-56.	2.2	20
86	Land cover and precipitation controls over longâ€term trends in carbon gains in the grassland biome of South America. Ecosphere, 2015, 6, 1-21.	1.0	19
87	Deforestation and current management practices reduce soil organic carbon in the semi-arid Chaco, Argentina. Agricultural Systems, 2020, 178, 102749.	3.2	17
88	Ecosystem services and tree plantations in Uruguay: A reply to Vihervaara et al. (2012). Forest Policy and Economics, 2012, 22, 85-88.	1.5	16
89	Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy, 2012, 4, 634-641.	2.5	16
90	Putting the Ecosystem Services idea at work: Applications on impact assessment and territorial planning. Environmental Development, 2021, 38, 100570.	1.8	15

#	Article	IF	Citations
91	Hydrological impacts of afforestation in the semiarid Patagonia: A modelling approach. Ecohydrology, 2019, 12, e2113.	1.1	14
92	Temperate Subhumid Grasslands of Southern South America. , 2020, , 577-593.		14
93	The Use of Satellite Imagery in Quantitative Phytogeography: A Case Study of Patagonia (Argentina). Tasks for Vegetation Science, 1991, , 183-204.	0.6	14
94	Effects of Animal Husbandry on Secondary Production and Trophic Efficiency at a Regional Scale. Ecosystems, 2014, 17, 738-749.	1.6	13
95	Spatial heterogeneity at different grain sizes in grazed versus ungrazed sites of the Patagonian steppe. Ecoscience, 2005, 12, 103-109.	0.6	12
96	How Can Science Be General, Yet Specific? The Conundrum of Rangeland Science in the 21st Century. Rangeland Ecology and Management, 2012, 65, 613-622.	1.1	12
97	Patterns and Controls of Primary Production in the Patagonian Steppe: A Remote Sensing Approach. Ecology, 2002, 83, 307.	1.5	11
98	Nonparametric upscaling of stochastic simulation models using transition matrices. Methods in Ecology and Evolution, 2016, 7, 313-322.	2.2	11
99	Differential responses of three grasses to defoliation, water and light availability. Plant Ecology, 2017, 218, 95-104.	0.7	10
100	How may deforestation rates and political instruments affect land use patterns and Carbon emissions in the semi-arid Chaco, Argentina?. Land Use Policy, 2020, 99, 104985.	2.5	10
101	Distinct ecosystem types respond differentially to grazing exclosure. Austral Ecology, 2020, 45, 548-556.	0.7	10
102	Forest strips increase connectivity and modify forests' functioning in a deforestation hotspot. Journal of Environmental Management, 2021, 290, 112606.	3.8	10
103	Disentangling the signal of climatic fluctuations from land use: changes in ecosystem functioning in South American protected areas (1982â€2012). Remote Sensing in Ecology and Conservation, 2017, 3, 177-189.	2.2	9
104	How do forage availability and climate control sheep reproductive performance?. Ecological Modelling, 2008, 217, 197-206.	1.2	8
105	Refuge effect of an unpalatable forb on community structure and grass morphology in a temperate grassland. Plant Ecology, 2013, 214, 363-372.	0.7	8
106	Functional syndromes as indicators of ecosystem change in temperate grasslands. Ecological Indicators, 2019, 96, 600-610.	2.6	8
107	Remote sensing of protected areas to derive baseline vegetation functioning characteristics. Journal of Vegetation Science, 2004, 15, 711.	1.1	7
108	Roads and land tenure mediate the effects of precipitation on forest cover change in the Argentine Dry Chaco. Land Use Policy, 2022, 112, 105806.	2.5	7

#	Article	IF	CITATIONS
109	Perspectives on Rangeland Management Education and Research in Argentina. Rangelands, 2011, 33, 2-12.	0.9	6
110	Discriminating the biophysical signal from humanâ€induced effects on longâ€term primary production dynamics. The case of Patagonia. Global Change Biology, 2021, 27, 4381-4391.	4.2	6
111	Production as a function of resource availability: Slopes and efficiencies are different., 2005, 16, 351.		6
112	Damping and lag effects of precipitation variability across trophic levels in Uruguayan rangelands. Agricultural Systems, 2020, 185, 102956.	3.2	5
113	The role of South American grazing lands in mitigating greenhouse gas emissions. A reply to: "Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and reviewâ€, by Viglizzo et al., (2019). Science of the Total Environment, 2020, 740, 140108.	3.9	5
114	INTERACTIONS OF WATER AND NITROGEN ON PRIMARY PRODUCTIVITY ACROSS SPATIAL AND TEMPORAL SCALES IN GRASSLAND AND SHRUBLAND ECOSYSTEMS. , 2006, , 201-216.		5
115	Controls of forage selective defoliation by sheep in arid rangelands. Ecosphere, 2020, 11, e03285.	1.0	4
116	Temporal and spatial patterns of ecosystem functioning in protected arid areas in southeastern Spain. Applied Vegetation Science, 2005, 8, 93.	0.9	4
117	Radiation use efficiency of the herbaceous layer of dry Chaco shrublands and woodlands: Spatial and temporal patterns. Applied Vegetation Science, 2022, 25, .	0.9	4
118	A data-driven methodological routine to identify key indicators for social-ecological system archetype mapping. Environmental Research Letters, 2022, 17, 045019.	2.2	4
119	Simulation models for educational purposes: an example on the coexistence of plant populations. Journal of Biological Education, 1990, 24, 81-86.	0.8	2
120	Building the GLENCOE Platform -Grasslands LENding eConomic and ecOsystems sErvices. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	1
121	On "Society Is Ready for a New Kind of Scienceâ€"Is Academia?â€. Some Thoughts from the South. BioScience, 2017, 67, 1017-1017.	2.2	O