GriÅja MoÄnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659891/publications.pdf Version: 2024-02-01

ΟριΔιλ Μοάλικ

#	Article	IF	CITATIONS
1	Contribution of coal combustion to black carbon: Coupling tracers with the aethalometer model. Atmospheric Research, 2022, 267, 105980.	4.1	5
2	Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter. Atmospheric Measurement Techniques, 2022, 15, 561-572.	3.1	20
3	Fireworks—a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols. Air Quality, Atmosphere and Health, 2022, 15, 1275-1286.	3.3	5
4	The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area. Atmospheric Chemistry and Physics, 2022, 22, 5577-5601.	4.9	15
5	European aerosol phenomenology â~' 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	10.0	41
6	A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance. Atmospheric Measurement Techniques, 2022, 15, 3805-3825.	3.1	6
7	Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties. Atmospheric Chemistry and Physics, 2021, 21, 431-455.	4.9	7
8	Elucidating local pollution and site representativeness at the Jungfraujoch, Switzerland through parallel aerosol measurements at an adjacent mountain ridge. Environmental Research Communications, 2021, 3, 021001.	2.3	6
9	The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley. Atmospheric Chemistry and Physics, 2021, 21, 4869-4897.	4.9	13
10	Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in Milan. Atmospheric Measurement Techniques, 2021, 14, 2919-2940.	3.1	20
11	Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities. Atmospheric Measurement Techniques, 2021, 14, 3195-3216.	3.1	22
12	Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. Science of the Total Environment, 2021, 770, 145324.	8.0	35
13	The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations. Atmosphere, 2021, 12, 1042.	2.3	21
14	Consistent determination of the heating rate of light-absorbing aerosol using wavelength- and time-dependent Aethalometer multiple-scattering correction. Science of the Total Environment, 2021, 791, 148277.	8.0	9
15	Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach. Atmospheric Measurement Techniques, 2021, 14, 6335-6355.	3.1	31
16	Characterization of non-refractory (NR) PM ₁ and source apportionment of organic aerosol in Kraków, Poland. Atmospheric Chemistry and Physics, 2021, 21, 14893-14906.	4.9	21
17	Bora Flow Characteristics in a Complex Valley Environment. Remote Sensing, 2021, 13, 4363.	4.0	1
18	Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Science of the Total Environment, 2020, 745, 140924.	8.0	60

#	Article	IF	CITATIONS
19	Substantial brown carbon emissions from wintertime residential wood burning over France. Science of the Total Environment, 2020, 743, 140752.	8.0	41
20	Performance of microAethalometers: Real-world Field Intercomparisons from Multiple Mobile Measurement Campaigns in Different Atmospheric Environments. Aerosol and Air Quality Research, 2020, 20, 2640-2653.	2.1	12
21	A new optical-based technique for real-time measurements of mineral dust concentration in PM ₁₀ using a virtual impactor. Atmospheric Measurement Techniques, 2020, 13, 3799-3813.	3.1	19
22	The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols. Atmospheric Measurement Techniques, 2020, 13, 4333-4351.	3.1	25
23	A single-beam photothermal interferometer for in situ measurements of aerosol light absorption. Atmospheric Measurement Techniques, 2020, 13, 7097-7111.	3.1	12
24	Hidden black carbon air pollution in hilly rural areas—a case study of Dinaric depression. European Journal of Geography, 2020, 11, 105-122.	0.4	3
25	The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics. Atmospheric Chemistry and Physics, 2020, 20, 14139-14162.	4.9	8
26	Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles. Science of the Total Environment, 2019, 686, 452-467.	8.0	38
27	Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDAR. Atmosphere, 2019, 10, 128.	2.3	9
28	Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sensing, 2019, 11, 106.	4.0	16
29	On-flight intercomparison of three miniature aerosol absorption sensors using unmanned aerial systems (UASs). Atmospheric Measurement Techniques, 2019, 12, 6425-6447.	3.1	20
30	Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.). Atmospheric Chemistry and Physics, 2019, 19, 14805-14824.	4.9	17
31	Evaluation of measurements of light transmission for the determination of black carbon on filters from different station types. Atmospheric Environment, 2019, 198, 1-11.	4.1	7
32	Quantification of source specific black carbon scavenging using an aethalometer and a disdrometer. Environmental Pollution, 2019, 246, 336-345.	7.5	23
33	Heating Rate of Light Absorbing Aerosols: Time-Resolved Measurements, the Role of Clouds, and Source Identification. Environmental Science & Technology, 2018, 52, 3546-3555.	10.0	25
34	The traffic emission-dispersion model for a Central-European city agrees with measured black carbon apportioned to traffic. Atmospheric Environment, 2018, 184, 177-190.	4.1	16
35	Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmospheric Chemistry and Physics, 2018, 18, 17843-17861.	4.9	77
36	Exposure to Black Carbon during Bicycle Commuting–Alternative Route Selection. Atmosphere, 2018, 9, 21.	2.3	35

#	Article	IF	CITATIONS
37	Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	70
38	An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmospheric Chemistry and Physics, 2018, 18, 9617-9629.	4.9	66
39	Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6175-6195.	3.3	62
40	Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau. Science of the Total Environment, 2017, 590-591, 14-21.	8.0	60
41	Wood combustion particles induce adverse effects to normal and diseased airway epithelia. Environmental Sciences: Processes and Impacts, 2017, 19, 538-548.	3.5	14
42	Monumental heritage exposure to urban black carbon pollution. Atmospheric Environment, 2017, 170, 22-32.	4.1	29
43	Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 2017, 169, 36-53.	4.1	65
44	Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment. Science of the Total Environment, 2017, 578, 613-625.	8.0	117
45	Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmospheric Chemistry and Physics, 2017, 17, 1653-1672.	4.9	150
46	Evaluation of the absorption Ãngström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 2017, 17, 4229-4249.	4.9	272
47	The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques, 2017, 10, 1043-1059.	3.1	60
48	Increased PM Concentrations during a Combined Wildfire and Saharan Dust Event Observed at High-Altitude Sonnblick Observatory, Austria. Aerosol and Air Quality Research, 2016, 16, 542-554.	2.1	17
49	Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2Âyears (2011–2012) of field campaigns. Atmospheric Chemistry and Physics, 2016, 16, 12601-12629.	4.9	62
50	Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area. Atmospheric Chemistry and Physics, 2016, 16, 5497-5512.	4.9	43
51	DECOMBIO - Contribution de la combustion de la biomasse aux PM10 en vallée de l'Arve : mise en place et qualification d'un dispositif de suivi. Pollution Atmospherique, 2016, , .	0.1	3
52	Through-tunnel estimates of vehicle fleet emission factors. Atmospheric Environment, 2015, 123, 180-189.	4.1	39
53	Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method. Atmospheric Chemistry and Physics, 2015, 15, 11011-11026.	4.9	42
54	Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2015, 15, 2985-3005.	4.9	138

#	Article	IF	CITATIONS
55	Characterization of primary and secondary wood combustion products generated under different burner loads. Atmospheric Chemistry and Physics, 2015, 15, 2825-2841.	4.9	99
56	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
57	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
58	Evaluation of the impact of transportation changes on air quality. Atmospheric Environment, 2015, 114, 19-31.	4.1	65
59	Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements. Atmospheric Measurement Techniques, 2015, 8, 43-55.	3.1	45
60	The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8, 1965-1979.	3.1	662
61	Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles. Atmospheric Environment, 2015, 122, 171-182.	4.1	57
62	Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach. Atmospheric Measurement Techniques, 2014, 7, 2373-2387.	3.1	59
63	Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter. Atmospheric Environment, 2014, 94, 307-315.	4.1	24
64	Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Environment, 2014, 98, 260-270.	4.1	122
65	Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmospheric Environment, 2014, 89, 64-75.	4.1	94
66	Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF ²) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2014, 14, 13773-13787	4.9	74
67	Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate. Atmospheric Chemistry and Physics, 2014, 14, 9641-9664.	4.9	103
68	Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer. Atmospheric Environment, 2013, 80, 31-40.	4.1	64
69	Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.	4.9	207
70	Chemical and morphological characterization of aerosol particles at Mt. Krvavec, Slovenia, during the EyjafjallajĶkull Icelandic volcanic eruption. Environmental Science and Pollution Research, 2012, 19, 235-243.	5.3	9
71	Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Science of the Total Environment, 2011, 409, 2824-2837.	8.0	88
72	Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmospheric Environment, 2011, 45, 3522-3527.	4.1	125

#	Article	IF	CITATIONS
73	Black Carbon Measurement Is Effective in Detecting the Benefits of Traffic Restriction Policy on Outdoor Air Quality—The Field Study of Ecopass Area in Milan, Italy. Epidemiology, 2011, 22, S62-S63.	2.7	0
74	Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions. Atmospheric Research, 2010, 98, 190-200.	4.1	53
75	Measurements of cavitation bubble dynamics basedÂonÂaÂbeam-deflection probe. Applied Physics A: Materials Science and Processing, 2008, 93, 901-905.	2.3	34
76	Measurements of the high pressure ultrasonic wave and the cavitation bubble by optodynamic method. Fluid Phase Equilibria, 2007, 256, 158-162.	2.5	11
77	Separation and Direct Detection of Long Chain Fatty Acids and their Methylesters by the Nonâ€Aqueous Reversed Phase HPLC and Silver Ion Chromatography, Combined with CO Laser Pumped Thermal Lens Spectrometry. Instrumentation Science and Technology, 2006, 34, 129-150.	1.8	10
78	Analysis of optodynamic sources generated during laser-induced breakdown in water. Ultrasonics, 2006, 44, e1255-e1258.	3.9	7
79	Optodynamic characterization of the shock waves after laser-induced breakdown in water. Optics Express, 2005, 13, 4107.	3.4	52
80	<title>Photothermal investigations of thin-layer chromatography plates</title> ., 2000, 3916, 171.		0
81	Experimental considerations of simultaneous thermal lens and beam deflection phenomena. Applied Optics, 1999, 38, 3329.	2.1	1
82	ON THE SIMULTANEOUS EFFECT OF BEAM DEFLECTION AND THERMAL LENSING PHENOMENA IN PHOTOTHERMAL SPECTROMETRY. Instrumentation Science and Technology, 1998, 26, 289-303.	1.8	3
83	The RICH detector for HERA-B. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 371, 295-299.	1.6	6
84	Design of a RICH detector for the HERA-B experiment. , 0, , .		0
85	Optodynamic characterization of shock waves after laser induced breakdown in water. , 0, , .		2
86	980 nm Diode laser retinochoroidal photocoagulation - in vitro comparison with frequency doubled Nd:YAG (532 nm) laser. Acta Ophthalmologica, 0, 85, 0-0.	0.3	0