List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6598501/publications.pdf Version: 2024-02-01

		20797	39638
218	10,733	60	94
papers	citations	h-index	g-index
222	222	222	5383
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 2014, 72, 238-245.	3.1	307
2	Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Composites Science and Technology, 2016, 122, 73-81.	3.8	258
3	Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Construction and Building Materials, 2014, 65, 114-121.	3.2	257
4	Graphene nanoplatelet-fly ash based geopolymer composites. Cement and Concrete Research, 2015, 76, 222-231.	4.6	250
5	The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design, 2014, 56, 833-841.	5.1	226
6	Utilization of oil palm kernel shell as lightweight aggregate in concrete – A review. Construction and Building Materials, 2013, 38, 161-172.	3.2	211
7	Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 2017, 148, 62-84.	3.2	209
8	A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 2018, 186, 550-576.	3.2	202
9	Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Materials & Design, 2013, 49, 1034-1041.	5.1	186
10	Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 2014, 53, 110-117.	3.2	186
11	Recycling of seashell waste in concrete: A review. Construction and Building Materials, 2018, 162, 751-764.	3.2	177
12	Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 2014, 59, 532-539.	5.1	174
13	Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 2016, 117, 122-138.	4.6	171
14	Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 2011, 25, 1848-1853.	3.2	160
15	Estimating building energy consumption using extreme learning machine method. Energy, 2016, 97, 506-516.	4.5	153
16	Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 2016, 112, 723-730.	4.6	151
17	Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. Journal of Cleaner Production, 2018, 203, 822-835.	4.6	138
18	Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 2016, 115, 307-314.	4.6	132

#	Article	IF	CITATIONS
19	A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Materials & Design, 2013, 51, 522-529.	5.1	130
20	Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Materials & Design, 2014, 57, 652-659.	5.1	128
21	USE OF RECYCLED CONCRETE AGGREGATE IN CONCRETE: A REVIEW. Journal of Civil Engineering and Management, 2013, 19, 796-810.	1.9	119
22	Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Construction and Building Materials, 2015, 101, 503-521.	3.2	119
23	Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Construction and Building Materials, 2012, 27, 252-258.	3.2	118
24	Strengthening of RC beams using prestressed fiber reinforced polymers – A review. Construction and Building Materials, 2015, 82, 235-256.	3.2	118
25	A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE, 2016, 11, e0147546.	1.1	118
26	High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Construction and Building Materials, 2016, 112, 629-638.	3.2	116
27	Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Materials & Design, 2011, 32, 2143-2148.	5.1	114
28	Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 2016, 120, 251-264.	3.2	113
29	The relationship between interlocking mechanism and bond strength in elastic and inelastic segment of splice sleeve. Construction and Building Materials, 2014, 55, 227-237.	3.2	111
30	Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. Journal of Cleaner Production, 2014, 80, 187-196.	4.6	109
31	Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading – A review. Engineering Structures, 2016, 124, 405-417.	2.6	108
32	A new method of producing high strength oil palm shell lightweight concrete. Materials & Design, 2011, 32, 4839-4843.	5.1	107
33	UTILIZATION OF PALM OIL FUEL ASH IN CONCRETE: A REVIEW / PALMI ALIEJAUS KURO PELENÅ ² NAUDOJIMAS BETONE. APÅ ¹ ⁄2VALGA. Journal of Civil Engineering and Management, 2011, 17, 234-247.	1.9	107
34	Oil-palm by-products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 2016, 126, 56-73.	4.6	107
35	Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete. Materials & Design, 2011, 32, 3926-3932.	5.1	106
36	Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. Journal of Cleaner Production, 2016, 135, 148-157.	4.6	106

#	Article	IF	CITATIONS
37	Properties of high-workability concrete with recycled concrete aggregate. Materials Research, 2011, 14, 248-255.	0.6	102
38	Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. Journal of Cleaner Production, 2016, 137, 982-996.	4.6	102
39	Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construction and Building Materials, 2014, 50, 499-507.	3.2	99
40	Engineering properties of oil palm shell lightweight concrete containing fly ash. Materials & Design, 2013, 49, 613-621.	5.1	98
41	Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete. Construction and Building Materials, 2016, 111, 286-297.	3.2	97
42	Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 2016, 120, 112-122.	3.2	96
43	Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete. Construction and Building Materials, 2017, 152, 964-977.	3.2	91
44	Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of Cleaner Production, 2015, 91, 297-304.	4.6	88
45	Durability properties of sustainable concrete containing high volume palm oil waste materials. Journal of Cleaner Production, 2016, 137, 167-177.	4.6	87
46	Oil palm shell lightweight concrete containing high volume ground granulated blast furnace slag. Construction and Building Materials, 2013, 40, 231-238.	3.2	85
47	Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Construction and Building Materials, 2013, 43, 490-496.	3.2	85
48	Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. Journal of Cleaner Production, 2016, 112, 566-574.	4.6	82
49	The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials, 2014, 55, 20-28.	3.2	77
50	Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. Journal of Cleaner Production, 2016, 119, 108-117.	4.6	77
51	Shear behaviour of reinforced palm kernel shell concrete beams. Construction and Building Materials, 2011, 25, 2918-2927.	3.2	74
52	Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 2017, 13, 53-62.	1.6	73
53	Side Near Surface Mounted (SNSM) technique for flexural enhancement of RC beams. Materials and Design, 2015, 83, 587-597.	3.3	71
54	Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. Journal of Cleaner Production, 2017, 161, 477-492.	4.6	71

#	Article	IF	CITATIONS
55	Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. Journal of Cleaner Production, 2016, 112, 763-770.	4.6	69
56	Bond properties of lightweight concrete – A review. Construction and Building Materials, 2016, 112, 478-496.	3.2	67
57	Shear strength of oil palm shell foamed concrete beams. Materials & Design, 2009, 30, 2227-2236.	5.1	66
58	Properties of eco-friendly self-compacting concrete containing modified treated palm oil fuel ash. Construction and Building Materials, 2018, 158, 742-754.	3.2	66
59	High volume cement replacement by environmental friendly industrial by-product palm oil clinker powder in cement – lime masonry mortar. Journal of Cleaner Production, 2018, 190, 272-284.	4.6	64
60	Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 2015, 16, 59-69.	1.3	63
61	Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Construction and Building Materials, 2018, 163, 482-495.	3.2	62
62	Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability, 2017, 9, 767.	1.6	58
63	Flexural behaviour of reinforced concrete slabs with ferrocement tension zone cover. Construction and Building Materials, 2000, 14, 245-252.	3.2	57
64	A comparison study of the mechanical properties and drying shrinkage of oil palm shell and expanded clay lightweight aggregate concretes. Materials & Design, 2014, 60, 320-327.	5.1	57
65	Characteristics of palm oil clinker as replacement for oil palm shell in lightweight concrete subjected to elevated temperature. Construction and Building Materials, 2015, 101, 942-951.	3.2	55
66	Feasibility study on the use of high volume palm oil clinker waste in environmental friendly lightweight concrete. Construction and Building Materials, 2017, 135, 94-103.	3.2	55
67	Oil palm shell lightweight concrete as a ductile material. Materials & Design, 2012, 36, 650-654.	5.1	51
68	Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 2016, 53, 1520-1528.	8.2	50
69	Utilization of ground granulated blast furnace slag as partial cement replacement in lightweight oil palm shell concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2545-2556.	1.3	49
70	Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash. Materials, 2015, 8, 2154-2173.	1.3	48
71	Influence of lightweight aggregate on the bond properties of concrete with various strength grades. Construction and Building Materials, 2015, 84, 377-386.	3.2	48
72	A Review on Strengthening Steel Beams Using FRP under Fatigue. Scientific World Journal, The, 2014, 2014, 1-21.	0.8	47

#	Article	IF	CITATIONS
73	The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar. Advances in Materials Science and Engineering, 2014, 2014, 1-13.	1.0	46
74	Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products. Journal of Cleaner Production, 2016, 127, 183-194.	4.6	46
75	Research progress on the flexural behaviour of externally bonded RC beams. Archives of Civil and Mechanical Engineering, 2016, 16, 982-1003.	1.9	46
76	Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Construction and Building Materials, 2017, 148, 369-375.	3.2	46
77	Failure analysis and structural behaviour of CFRP strengthened steel I-beams. Construction and Building Materials, 2012, 30, 1-9.	3.2	45
78	Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams. Computers and Concrete, 2013, 11, 237-252.	0.7	45
79	The use of wire mesh–epoxy composite for enhancing the flexural performance of concrete beams. Materials & Design, 2014, 60, 250-259.	5.1	43
80	Non-linear time domain analysis of base isolated multi-storey building under site specific bi-directional seismic loading. Automation in Construction, 2012, 22, 554-566.	4.8	42
81	Ductility performance of lightweight concrete element containing massive palm shell clinker. Construction and Building Materials, 2014, 63, 234-241.	3.2	42
82	Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar. Advances in Materials Science and Engineering, 2015, 2015, 1-15.	1.0	42
83	Flexural behaviour of RC beams strengthened with wire mesh-epoxy composite. Construction and Building Materials, 2015, 79, 104-114.	3.2	42
84	Influence of source materials and the role of oxide composition on the performance of ternary blended sustainable geopolymer mortar. Construction and Building Materials, 2017, 144, 608-623.	3.2	41
85	Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. Journal of Cleaner Production, 2016, 133, 414-426.	4.6	40
86	Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Construction and Building Materials, 2017, 130, 113-121.	3.2	40
87	CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening technique. Construction and Building Materials, 2018, 165, 28-44.	3.2	40
88	Damage detection of SFRC concrete beams subjected to pure torsion by integrating acoustic emission and Weibull damage function. Structural Control and Health Monitoring, 2016, 23, 51-68.	1.9	39
89	Palm Oil Fuel Ash as a Partial Cement Replacement for Producing Durable Self-consolidating High-Strength Concrete. Arabian Journal for Science and Engineering, 2014, 39, 8507-8516.	1.1	38
90	Response of oil palm shell concrete slabs subjected to quasi-static and blast loads. Construction and Building Materials, 2016, 116, 391-402.	3.2	38

#	Article	IF	CITATIONS
91	Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration. Renewable and Sustainable Energy Reviews, 2012, 16, 6268-6284.	8.2	37
92	Influence of Sand/Cement Ratio on Mechanical Properties of Palm Kernel Shell Concrete. Journal of Applied Sciences, 2009, 9, 1764-1769.	0.1	37
93	Behavior of Industrial Steel Rack Connections. Mechanical Systems and Signal Processing, 2016, 70-71, 725-740.	4.4	35
94	Strengthening of RC Beams Using Externally Bonded Reinforcement Combined with Near-Surface Mounted Technique. Polymers, 2016, 8, 261.	2.0	34
95	Pitch spacing effect on the axial compressive behaviour of spirally reinforced concrete-filled steel tube (SRCFT). Thin-Walled Structures, 2016, 100, 213-223.	2.7	34
96	Reinforced steel I-beams: A comparison between 2D and 3D simulation. Simulation Modelling Practice and Theory, 2011, 19, 564-585.	2.2	33
97	Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash. Materials, 2016, 9, 396.	1.3	33
98	Mechanical, toughness, bond and durability-relatedÂproperties of lightweight concrete reinforced with steel fibres. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	33
99	The Effect of Different Parameters on the Development of Compressive Strength of Oil Palm Shell Geopolymer Concrete. Scientific World Journal, The, 2014, 2014, 1-16.	0.8	32
100	Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Construction and Building Materials, 2015, 95, 686-695.	3.2	32
101	Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete. Engineering Structures, 2015, 101, 24-33.	2.6	32
102	Behaviour of precracked RC beams strengthened using the side-NSM technique. Construction and Building Materials, 2016, 123, 617-626.	3.2	32
103	Failure modes and serviceability of high strength self compacting concrete deep beams. Engineering Failure Analysis, 2011, 18, 2272-2281.	1.8	31
104	A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	31
105	Steel Rack Connections: Identification of Most Influential Factors and a Comparison of Stiffness Design Methods. PLoS ONE, 2015, 10, e0139422.	1.1	31
106	Heat-treated palm oil fuel ash as an effective supplementary cementitious material originating from agriculture waste. Construction and Building Materials, 2018, 167, 44-54.	3.2	31
107	Fracture evaluation of multi-layered precast reinforced geopolymer-concrete composite beams by incorporating acoustic emission into mechanical analysis. Construction and Building Materials, 2016, 127, 274-283.	3.2	30
108	Glass Fiber Reinforced Polymer (GFRP) Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique. Polymers, 2017, 9, 180.	2.0	30

#	Article	IF	CITATIONS
109	Utilization of Palm Oil Fuel Ash as Binder in Lightweight Oil Palm Shell Geopolymer Concrete. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.0	28
110	Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and Buildings, 2014, 84, 727-739.	3.1	28
111	The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams. Materials, 2015, 8, 4131-4146.	1.3	28
112	Prestressing of NSM steel strands to enhance the structural performance of prestressed concrete beams. Construction and Building Materials, 2016, 129, 289-301.	3.2	28
113	Nonlinear dynamically automated excursions for rubber-steel bearing isolation in multi-storey construction. Automation in Construction, 2013, 30, 265-275.	4.8	27
114	Bond stress-slip relationship of oil palm shell lightweight concrete. Engineering Structures, 2016, 127, 319-330.	2.6	25
115	Performance evaluation of masonry grout containing high volume of palm oil industry by-products. Journal of Cleaner Production, 2019, 220, 1202-1214.	4.6	25
116	Compressive behaviour of lightweight oil palm shell concrete incorporating slag. Construction and Building Materials, 2015, 94, 263-269.	3.2	24
117	Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate. Procedia Engineering, 2015, 125, 587-593.	1.2	23
118	Innovative hybrid bonding method for strengthening reinforced concrete beam in flexure. Construction and Building Materials, 2015, 79, 370-378.	3.2	23
119	Near Surface Mounted Composites for Flexural Strengthening of Reinforced Concrete Beams. Polymers, 2016, 8, 67.	2.0	23
120	Prediction of the structural behaviour of oil palm shell lightweight concrete beams. Construction and Building Materials, 2016, 102, 722-732.	3.2	23
121	Microstructural and Strength Characteristics of High-Strength Mortar Using Nontraditional Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	23
122	Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers. Journal of Materials Research and Technology, 2021, 15, 6736-6746.	2.6	23
123	Key Fresh Properties of Self-Consolidating High-Strength POFA Concrete. Journal of Materials in Civil Engineering, 2014, 26, 134-142.	1.3	22
124	Adaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beams. Construction and Building Materials, 2015, 98, 276-285.	3.2	22
125	Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 2018, 22, 852-868.	1.0	22
126	Effect of Replacement of Normal Weight Coarse Aggregate with Oil Palm Shell on Properties of Concrete. Arabian Journal for Science and Engineering, 2012, 37, 955-964.	1.1	21

#	Article	IF	CITATIONS
127	Torsional and cracking characteristics of steel fiber-reinforced oil palm shell lightweight concrete. Journal of Composite Materials, 2016, 50, 115-128.	1.2	21
128	NON-LINEAR DYNAMIC ANALYSIS OF COUPLED SPAR PLATFORM. Journal of Civil Engineering and Management, 2013, 19, 476-491.	1.9	20
129	A new sustainable composite column using an agricultural solid waste as aggregate. Journal of Cleaner Production, 2016, 129, 282-291.	4.6	20
130	Durability Indicators for Sustainable Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash. Sustainability, 2018, 10, 2345.	1.6	20
131	Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams. Construction and Building Materials, 2012, 30, 265-273.	3.2	19
132	Influence of Cementitious Materials and Aggregates Content on Compressive Strength of Palm Kernel Shell Concrete. Journal of Applied Sciences, 2008, 8, 3207-3213.	0.1	19
133	Automated serviceability prediction of NSM strengthened structure using a fuzzy logic expert system. Expert Systems With Applications, 2015, 42, 376-389.	4.4	18
134	Development of Sustainable Geopolymer Mortar using Industrial Waste Materials. Materials Today: Proceedings, 2016, 3, 125-129.	0.9	18
135	High Strength Lightweight Aggregate Concrete using Blended Coarse Lightweight Aggregate Origin from Palm Oil Industry. Sains Malaysiana, 2017, 46, 667-675.	0.3	18
136	Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation. Nuclear Engineering and Design, 2012, 250, 116-124.	0.8	17
137	Effect of Magnesium Sulphate on Self-Compacting Concrete Containing Supplementary Cementitious Materials. Advances in Materials Science and Engineering, 2013, 2013, 1-8.	1.0	17
138	Structural performance of lightweight concrete beams strengthened with side-externally bonded reinforcement (S-EBR) technique using CFRP fabrics. Composites Part B: Engineering, 2019, 176, 107323.	5.9	17
139	An experimental investigation on bending stiffness and neutral axis depth variation of over-reinforced high strength concrete beams. Nuclear Engineering and Design, 2011, 241, 2060-2067.	0.8	16
140	Bond strength evaluation of palm oil fuel ash-based geopolymer normal weight and lightweight concretes with steel reinforcement. Journal of Adhesion Science and Technology, 2018, 32, 19-35.	1.4	16
141	Eliminating Premature End Peeling of Flexurally Strengthened Reinforced Concrete Beams. Journal of Applied Sciences, 2009, 9, 1106-1113.	0.1	16
142	Efficacy of ASTM Saturation Techniques for Measuring the Water Absorption of Concrete. Arabian Journal for Science and Engineering, 2011, 36, 761-768.	1.1	15
143	Flowing ability of self-consolidating concrete and its binder paste phase including palm oil fuel ash. Magazine of Concrete Research, 2012, 64, 931-944.	0.9	15
144	Structural Lightweight Aggregate Concrete by Incorporating Solid Wastes as Coarse Lightweight Aggregate. Applied Mechanics and Materials, 0, 749, 337-342.	0.2	15

#	Article	IF	CITATIONS
145	Oil and Gas Energy Potential at Malaysian Seabed and Spar Platform for Deepwater Installation. International Journal of Green Energy, 2012, 9, 111-120.	2.1	14
146	THE EFFECT OF ASPECT RATIO AND VOLUME FRACTION ON MECHANICAL PROPERTIES OF STEEL FIBRE-REINFORCED OIL PALM SHELL CONCRETE. Journal of Civil Engineering and Management, 2015, 22, 168-177.	1.9	14
147	Response of nonlinear offshore spar platform under wave and current. Ocean Engineering, 2017, 144, 296-304.	1.9	14
148	Valorization of Wastes from Power Plant, Steel-Making and Palm Oil Industries as Partial Sand Substitute in Concrete. Waste and Biomass Valorization, 2018, 9, 1645-1654.	1.8	14
149	Ductility Enhancement of Sustainable Fibrous-Reinforced High-Strength Lightweight Concrete. Polymers, 2022, 14, 727.	2.0	14
150	Strengthening of Steel I-Beams Using CFRP Strips: An Investigation on CFRP Bond Length. Advances in Structural Engineering, 2012, 15, 2191-2204.	1.2	13
151	Microstructural investigation and durability performance of high volume industrial by-products-based masonry mortars. Construction and Building Materials, 2018, 189, 906-923.	3.2	13
152	An Experimental Investigation of the Stress-Strain Distribution in High Strength Concrete Deep Beams. Procedia Engineering, 2011, 14, 2141-2150.	1.2	11
153	STRUCTURAL BEHAVIOUR OF FULLY COUPLED SPAR–MOORING SYSTEM UNDER EXTREME WAVE LOADING. Journal of Civil Engineering and Management, 2014, 19, S69-S77.	1.9	11
154	Inclusion of CFRP-Epoxy Composite for End Anchorage in NSM-Epoxy Strengthened Beams. Advances in Materials Science and Engineering, 2015, 2015, 1-10.	1.0	11
155	Torsional behaviour of steel fibre-reinforced oil palm shell concrete beams. Materials and Design, 2015, 87, 854-862.	3.3	11
156	Ductility behaviours of oil palm shell steel fibre-reinforced concrete beams under flexural loading. European Journal of Environmental and Civil Engineering, 2019, 23, 866-878.	1.0	11
157	Investigation on Energy Absorption Capacity of Reinforced Concrete Beams by the Near-Surface Mounted Technique Using Ductile Materials. Science of Advanced Materials, 2016, 8, 1536-1546.	0.1	11
158	Comparison of shear lag in structural steel building with framed tube and braced tube. Structural Engineering and Mechanics, 2014, 49, 297-309.	1.0	11
159	Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage. Structural Engineering and Mechanics, 2015, 56, 899-916.	1.0	11
160	High strength oil palm shell concrete beams reinforced with steel fibres. Materiales De Construccion, 2017, 67, 142.	0.2	11
161	New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method. Structural Engineering and Mechanics, 2010, 36, 625-642.	1.0	10
162	INCORPORATION OF RUBBER-STEEL BEARING ISOLATION IN MULTI-STOREY MUILDING. Journal of Civil Engineering and Management, 2014, 19, S33-S49.	1.9	9

#	Article	IF	CITATIONS
163	Development of High Strength Natural Fibre based Composite Plates for Potential Application in Retrofitting of RC Structure. Indian Journal of Science and Technology, 2015, 8, .	0.5	9
164	Sustainable palm oil fuel ash mortar used as partial adhesive replacement in flexurally strengthened RC beams. Construction and Building Materials, 2019, 226, 507-523.	3.2	9
165	Effect of High-cyclic Loads on Dynamic Response of Reinforced Concrete Slabs. KSCE Journal of Civil Engineering, 2019, 23, 1293-1301.	0.9	9
166	Flexural Performance of RC Beams Strengthened with Externally-Side Bonded Reinforcement (E-SBR) Technique Using CFRP Composites. Materials, 2021, 14, 2809.	1.3	9
167	Enunciation of embryonic palm oil clinker based geopolymer concrete and its engineering properties. Construction and Building Materials, 2022, 318, 125975.	3.2	8
168	Development of lightweight concrete using industrial waste material, palm kernel shell as lightweight aggregate and its properties. , 2010, , .		7
169	Effective Method of Repairing RC Beam Using Externally Bonded Steel Plate. Applied Mechanics and Materials, 0, 567, 399-404.	0.2	6
170	Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading. Materials, 2016, 9, 305.	1.3	6
171	Influence of palm oil clinker powder on the fresh and mechanical properties of masonry mortars. IOP Conference Series: Materials Science and Engineering, 2018, 431, 082002.	0.3	6
172	Drying Shrinkage Strain of Palm-oil by-products Lightweight Concrete: A Comparison between Experimental and Prediction Models. KSCE Journal of Civil Engineering, 2018, 22, 4997-5008.	0.9	6
173	Chemo-physico-mechanical characteristics of high-strength alkali-activated mortar containing non-traditional supplementary cementitious materials. Journal of Building Engineering, 2021, 44, 103368.	1.6	6
174	Nonlinear Finite Element Analysis of Spar Platform. Advanced Science Letters, 2012, 13, 723-726.	0.2	6
175	Effects of Intermediate Anchors on End Anchored Carbon Fibre Reinforced Polymer Laminate Flexurally Strengthened Reinforced Concrete Beams. Journal of Applied Sciences, 2008, 9, 142-148.	0.1	6
176	Yield load prediction of nailed timber joints using nail diameter and timber specific gravity. Wood Science and Technology, 2004, 38, 599-615.	1.4	5
177	Strength evaluation of oil palm stem trussed rafters. Construction and Building Materials, 2006, 20, 812-818.	3.2	5
178	Failure Modes of CFRP Flexural Strengthened Steel I-Beams. Key Engineering Materials, 0, 471-472, 590-595.	0.4	5
179	Correlations between Fresh Properties of Self-Consolidating Concrete Including Palm Oil Fuel Ash. Advanced Materials Research, 2011, 250-253, 409-416.	0.3	5
180	Experimental Investigations on U- and L-Shaped End Anchored CFRP Laminate Strengthened Reinforced Concrete Beams. Arabian Journal for Science and Engineering, 2012, 37, 905-919.	1.1	5

#	Article	IF	CITATIONS
181	The Effect of Palm Oil Fuel Ash as a Cementreplacement Material on Self-Compacting Concrete. Applied Mechanics and Materials, 0, 567, 529-534.	0.2	5
182	Flexural Behaviour of Concrete Beams Bonded with Wire Mesh-Epoxy Composite. Applied Mechanics and Materials, 0, 567, 411-416.	0.2	5
183	Prevention of Debonding Failure of Intermediate Anchor to Eliminate Premature Shear Failure of Flexurally Strengthened Reinforced Concrete Beams. Arabian Journal for Science and Engineering, 2015, 40, 2219-2232.	1.1	5
184	Simulating concrete cover separation in RC beams strengthened with near-surface mounted reinforcements. Construction and Building Materials, 2016, 122, 1-11.	3.2	5
185	Critical curtailment location of EBR FRP bonded RC beams using dimensional analysis and fuzzy logic expert system. Composite Structures, 2017, 166, 87-95.	3.1	5
186	Prediction of IC debonding failure of precracked FRP strengthened RC beams using global energy balance. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	5
187	Local Stiffening of Steel I-Beams by Using CFRP Materials. Advanced Materials Research, 0, 163-167, 3838-3843.	0.3	4
188	Structural Lightweight Aggregate Concrete Containing High Volume Waste Materials. Key Engineering Materials, 0, 594-595, 498-502.	0.4	4
189	EFFICIENT DESIGN IN BUILDING CONSTRUCTION WITH RUBBER BEARING IN MEDIUM RISK SEISMICITY: CASE STUDY AND ASSESSMENT. Journal of Civil Engineering and Management, 2014, 20, 621-631.	1.9	4
190	Energy efficient brick kilns for sustainable environment. Desalination and Water Treatment, 0, , 1-10.	1.0	4
191	Properties of Self-Consolidating Palm Oil Fuel Ash Concrete. Advanced Science Letters, 2012, 17, 312-319.	0.2	4
192	Hybrid Anchor System to Eliminate End Peeling of Flexurally Strengthened Reinforced Concrete Beam. Indian Journal of Science and Technology, 2015, 8, 748.	0.5	4
193	Correlations between Different Hardened Properties of High-Strength Self-Consolidating Concrete Including Palm Oil Fuel Ash. Applied Mechanics and Materials, 0, 117-119, 1215-1222.	0.2	3
194	Effect of replacement of oil-palm-boiler clinker with oil palm shell on the properties of concrete. AIP Conference Proceedings, 2016, , .	0.3	3
195	Experimental Investigation on Fatigue Behavior of Wide-Flange Steel I-Beams Strengthened Using Different CFRP End Cutting Shapes. International Journal of Steel Structures, 2019, 19, 760-768.	0.6	3
196	Performance Evaluation of Engineering Properties, Radiation Shielding, and Sustainability of Hollow Masonry Blocks Produced Using a High Volume of Industrial By-Products. Journal of Materials in Civil Engineering, 2021, 33, 04021003.	1.3	3
197	Flexural Performance of Reinforced Concrete Beams Strengthened by a New Side Near-Surface Mounted Technique Using Carbon Fibre-Reinforced Polymer Bars: Experimental and Analytical Investigation. Science of Advanced Materials, 2016, 8, 726-740.	0.1	3
198	Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete. Computers and Concrete, 2017, 19, 515-526.	0.7	3

#	Article	IF	CITATIONS
199	Analysis of Builtâ€up Timber Columns Using Matrix Progression Method. Journal of Structural Engineering, 1991, 117, 1911-1928.	1.7	2
200	Cost Minimum Proportioning of Non-Slump Concrete Mix Using Genetic Algorithms. Advanced Materials Research, 2012, 468-471, 50-54.	0.3	2
201	Nonlinear Response of Coupled Integrated Spar Platform Under Severe Sea States. , 2012, , .		2
202	Wind Induced Nonlinear Response of Coupled Spar Platform. , 2014, , .		2
203	Wave Data for Shallow and Deep Water Sedimentary Basins of Malaysia. Advanced Science Letters, 2012, 14, 360-364.	0.2	2
204	The Potential of Geopolymer in Development of Green Coating Materials: A Review. Arabian Journal for Science and Engineering, 2022, 47, 12289-12299.	1.7	2
205	Comparison of European standard EN 310 and EN 789 in determining the bending strength and modulus of elasticity of red seraya (Shorea spp.) plywood panel: experimental and finite element analysis. European Journal of Wood and Wood Products, 2013, 71, 483-490.	1.3	1
206	Effect of moorings drag and inertia on response of spar platform. KSCE Journal of Civil Engineering, 2017, 21, 2503-2513.	0.9	1
207	Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building. Computers and Concrete, 2015, 16, 503-529.	0.7	1
208	Retrofitting of vulnerable RC structures by base isolation technique. Earthquake and Structures, 2015, 9, 603-623.	1.0	1
209	Spar platform at deep water region in Malaysian sea. International Journal of Physical Sciences, 2011, 6,	0.1	1
210	Statistical Technique for Grouping Tropical Timbers into Similar Strength Groups. Modern Applied Science, 2012, 6, .	0.4	1
211	COMBINING EBR CFRP SHEET WITH PRESTRESSED NSM STEEL STRANDS TO ENHANCE THE STRUCTURAL BEHAVIOR OF PRESTRESSED CONCRETE BEAMS. Journal of Civil Engineering and Management, 2021, 27, 637-650.	1.9	1
212	Genetic Algorithm for Material Cost Minimization of External Strengthening System with Fiber Reinforced Polymer. Advanced Materials Research, 0, 468-471, 1817-1822.	0.3	0
213	Experimental Investigation on the Torsional Behavior of CFRP Strengthened Square Hollow Steel Sections. , 2012, , .		0
214	Tension Stiffening Analysis for Cyclically Loaded RC Beams. Applied Mechanics and Materials, 0, 567, 517-521.	0.2	0
215	Compressive Behaviour of Polyarcylonitrile Fibre Reinforced Lightweight Aggregate Concrete Composite. Advanced Materials Research, 2015, 1115, 188-191.	0.3	0
216	Hydrodynamic Response of Floating Coupled Spar in Deep Sea. Procedia Engineering, 2017, 194, 182-188.	1.2	0

#	Article	IF	CITATIONS
217	Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm. Computers and Concrete, 2017, 19, 127-131.	0.7	0
218	Eco-Friendly Masonry Products for Affordable Housing—Perspective of Positive Social Impact. , 2021, , 1-11.		0