Shaomeng Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6598285/shaomeng-wang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

354 papers

26,369 citations

87 h-index

147 g-index

529 ext. papers

29,365 ext. citations

7.5 avg, IF

6.87 L-index

#	Paper	IF	Citations
354	Further development and validation of empirical scoring functions for structure-based binding affinity prediction. <i>Journal of Computer-Aided Molecular Design</i> , 2002 , 16, 11-26	4.2	842
353	Comparative evaluation of 11 scoring functions for molecular docking. <i>Journal of Medicinal Chemistry</i> , 2003 , 46, 2287-303	8.3	749
352	Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. <i>Nature</i> , 2014 , 510, 278-82	50.4	650
351	Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 3432-5	8.3	581
350	The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 2977-80	8.3	577
349	Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3933-8	11.5	574
348	Structure-based design of potent non-peptide MDM2 inhibitors. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10130-1	16.4	543
347	Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. <i>Annual Review of Pharmacology and Toxicology</i> , 2009 , 49, 223-41	17.9	477
346	The PDBbind database: methodologies and updates. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 4111-9	8.3	462
345	Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. <i>Cell Reports</i> , 2013 , 4, 1116-30	10.6	447
344	A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4700-5	11.5	412
343	Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. <i>Analytical Biochemistry</i> , 2004 , 332, 261-73	3.1	400
342	Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 1038-52	8.3	314
341	Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 2430-40	8.3	313
340	Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. <i>Journal of Medicinal Chemistry</i> , 2001 , 44, 4313-24	8.3	306
339	Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 6139-42	8.3	257
338	Coumarin-based inhibitors of HIV integrase. <i>Journal of Medicinal Chemistry</i> , 1997 , 40, 242-9	8.3	255

337	Targeting the MDM2-p53 interaction for cancer therapy. Clinical Cancer Research, 2008, 14, 5318-24	12.9	248
336	How does consensus scoring work for virtual library screening? An idealized computer experiment. Journal of Chemical Information and Computer Sciences, 2001 , 41, 1422-6		236
335	Computer Automated log P Calculations Based on an Extended Group Contribution Approach. <i>Journal of Chemical Information and Computer Sciences</i> , 1994 , 34, 752-781		230
334	An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. <i>Journal of Chemical Information and Computer Sciences</i> , 2004 , 44, 2114-25		215
333	Conformational changes of small molecules binding to proteins. <i>Bioorganic and Medicinal Chemistry</i> , 1995 , 3, 411-28	3.4	215
332	A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 2714-26	8.3	207
331	SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. <i>Cancer Research</i> , 2014 , 74, 5855-65	10.1	205
330	Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. <i>Molecular Cell</i> , 2014 , 53, 247-61	17.6	203
329	Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. <i>Journal of Medicinal Chemistry</i> , 1997 , 40, 942-51	8.3	199
328	Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 462-481	8.3	197
327	A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 5553-61	8.3	196
326	Design of triazole-stapled BCL9 Helical peptides to target the Etatenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 1137-46	8.3	195
325	3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. <i>Journal of Medicinal Chemistry</i> , 2000 , 43, 3045-51	8.3	187
324	A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In[Vivo. <i>Cancer Cell</i> , 2019 , 36, 498-511.e17	24.3	181
323	Comparison of the NCI open database with seven large chemical structural databases. <i>Journal of Chemical Information and Computer Sciences</i> , 2001 , 41, 702-12		179
322	Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. <i>Clinical Cancer Research</i> , 2006 , 12, 4119-26	12.9	177
321	Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15279-94	16.4	175
320	Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7223-34	16.4	165

319	Chimeric (alpha/beta + alpha)-peptide ligands for the BH3-recognition cleft of Bcl-XL: critical role of the molecular scaffold in protein surface recognition. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11966-8	16.4	161
318	Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. <i>Molecular Cancer Therapeutics</i> , 2008 , 7, 1772-81	6.1	160
317	Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 941-964	8.3	157
316	(alpha/beta+alpha)-peptide antagonists of BH3 domain/Bcl-x(L) recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 139-54	16.4	156
315	SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. <i>Cancer Research</i> , 2008 , 68, 9384-93	10.1	155
314	Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 7970-3	8.3	150
313	Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. <i>Seminars in Oncology</i> , 2003 , 30, 133-42	5.5	150
312	Antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 2472-81	8.3	146
311	Structure-based design of potent, conformationally constrained Smac mimetics. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16686-7	16.4	143
310	Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. <i>Biochemical Pharmacology</i> , 2003 , 66, 93-103	6	140
309	Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2017 , 7,	5.4	137
308	Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. <i>Clinical Cancer Research</i> , 2007 , 13, 2226-35	12.9	135
307	Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 668-75	6.1	134
306	Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. <i>Journal of Medicinal Chemistry</i> , 2003 , 46, 4377-92	8.3	134
305	Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 6685-6704	8.3	133
304	Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 448-466	8.3	132
303	Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 4147-50	8.3	131
302	A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. <i>Cancer Research</i> , 2006 , 66, 11348-5	5₫ ^{0.1}	130

301	Targeting apoptosis pathways for new cancer therapeutics. <i>Annual Review of Medicine</i> , 2014 , 65, 139-5	5 17.4	129
300	Residues in the second cysteine-rich region of protein kinase C delta relevant to phorbol ester binding as revealed by site-directed mutagenesis. <i>Journal of Biological Chemistry</i> , 1995 , 270, 21852-9	5.4	128
299	National Cancer Institute Drug Information System 3D database. <i>Journal of Chemical Information and Computer Sciences</i> , 1994 , 34, 1219-24		128
298	Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodegradation. <i>Journal of Chemical Information and Modeling</i> , 1992 , 32, 474	4-8 2	125
297	Design of small-molecule peptidic and nonpeptidic Smac mimetics. <i>Accounts of Chemical Research</i> , 2008 , 41, 1264-77	24.3	124
296	BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer. <i>Molecular Cancer Research</i> , 2016 , 14, 324-31	6.6	120
295	Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12809-14	16.4	119
294	Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 2047-54	8.3	119
293	Small-molecule SMAC mimetics as new cancer therapeutics. <i>Pharmacology & Therapeutics</i> , 2014 , 144, 82-95	13.9	118
292	High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. Journal of the American Chemical Society, 2013 , 135, 669-82	16.4	117
291	CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. Journal of Chemical Information and Modeling, 2011 , 51, 2115-31	6.1	117
290	Discovery of HIV-1 integrase inhibitors by pharmacophore searching. <i>Journal of Medicinal Chemistry</i> , 1997 , 40, 930-6	8.3	117
289	Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 3759-62	8.3	117
288	MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. <i>Journal of Computer-Aided Molecular Design</i> , 1999 , 13, 435-51	4.2	117
287	Targeted Degradation of BET Proteins in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 247	612487	' 115
286	Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. <i>Molecular Pharmaceutics</i> , 2010 , 7, 1974-84	5.6	110
285	Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. <i>Molecular Cancer Therapeutics</i> , 2005 , 4, 1096-104	6.1	109
284	In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. <i>Clinical Cancer Research</i> , 2004 , 10, 7757-63	12.9	109

283	The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. <i>Genes and Development</i> , 2013 , 27, 1752-68	12.6	107
282	Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. <i>Psychopharmacology</i> , 2007 , 193, 159-70	4.7	107
281	Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER). <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 1420-1442	8.3	106
2 80	cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. <i>Cell Death and Differentiation</i> , 2012 , 19, 1791-801	12.7	105
279	Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. <i>Blood</i> , 2008 , 111, 1584-93	2.2	103
278	CSAR benchmark exercise of 2010: selection of the protein-ligand complexes. <i>Journal of Chemical Information and Modeling</i> , 2011 , 51, 2036-46	6.1	102
277	Hydrazide-containing inhibitors of HIV-1 integrase. <i>Journal of Medicinal Chemistry</i> , 1997 , 40, 937-41	8.3	97
276	Self-Guided Molecular Dynamics Simulation for Efficient Conformational Search. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 7238-7250	3.4	96
275	Discovery of 4-((3聚,4聚,5聚)-6?-Chloro-4R(3-chloro-2-fluorophenyl)-1Rethyl-2?-oxodispiro[cyclohexane-1,2Rpyrrolidin Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in	e83 ₃ R3?	-iggloline]-!
274	Clinical Development. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 2819-2839 RNF111-dependent neddylation activates DNA damage-induced ubiquitination. <i>Molecular Cell</i> , 2013 , 49, 897-907	17.6	93
273	Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 791	8- <u>3</u> 0	93
272	Identification of a More Potent Analogue of the Naturally Occurring Alkaloid Huperzine A. Predictive Molecular Modeling of Its Interaction with AChE. <i>Journal of the American Chemical</i> <i>Society</i> , 1996 , 118, 11357-11362	16.4	93
271	Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. <i>Cancer Research</i> , 2005 , 65, 5063-9	10.1	91
270	Nonphosphorylated peptide ligands for the Grb2 Src homology 2 domain. <i>Journal of Biological Chemistry</i> , 1997 , 272, 29046-52	5.4	89
269	beta2-chimaerin is a novel target for diacylglycerol: binding properties and changes in subcellular localization mediated by ligand binding to its C1 domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 11854-9	11.5	89
268	Activating STAT6 mutations in follicular lymphoma. <i>Blood</i> , 2015 , 125, 668-79	2.2	87
267	(-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. <i>Molecular Cancer Therapeutics</i> , 2005 , 4, 197-205	6.1	87
266	(-)-gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. <i>Neoplasia</i> , 2006 , 8, 163-72	6.4	84

(1991-2009)

265	Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. <i>Cancer Research</i> , 2009 , 69, 6556-64	10.1	80
264	Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11830-9	16.4	80
263	Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. <i>Cancer Research</i> , 2004 , 64, 7947-53	10.1	79
262	Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2001 , 11, 251	<u>3-9</u>	77
261	Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. <i>Blood</i> , 2010 , 116, 71-80	2.2	75
260	Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 11280-11300	8.3	75
259	Structure-Based Design of Conformationally Constrained, Cell-Permeable STAT3 Inhibitors. <i>ACS Medicinal Chemistry Letters</i> , 2010 , 1, 85-89	4.3	74
258	Targeting transcriptional regulation of SARS-CoV-2 entry factors and. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 ,	11.5	74
257	Antiangiogenic effect of TW37, a small-molecule inhibitor of Bcl-2. Cancer Research, 2006, 66, 8698-706	10.1	73
256	Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. Journal of Medicinal Chemistry, 2001 , 44, 1349-55	8.3	73
255	Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 7169-80	8.3	72
254	Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2003 , 13, 513-7	2.9	72
253	Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 1113-23	8.3	71
252	TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. <i>Cancer Research</i> , 2009 , 69, 2757-65	10.1	71
251	The discovery of novel, structurally diverse protein kinase C agonists through computer 3D-database pharmacophore search. Molecular modeling studies. <i>Journal of Medicinal Chemistry</i> , 1994 , 37, 4479-89	8.3	71
250	Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. <i>Molecular Cancer Therapeutics</i> , 2008 , 7, 1533-42	6.1	69
249	Acylpyrogallols as inhibitors of antiapoptotic Bcl-2 proteins. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 717-20	8.3	67
248	A computer automated structure evaluation (CASE) approach to calculation of partition coefficient. Journal of Computational Chemistry, 1991 , 12, 1025-1032	3.5	67

247	Structure-Based Design of Ecarboline Analogues as Potent and Specific BET Bromodomain Inhibitors. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 4927-39	8.3	66
246	The making of I-BET762, a BET bromodomain inhibitor now in clinical development. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 7498-500	8.3	65
245	Modeling, chemistry, and biology of the benzolactam analogues of indolactam V (ILV). 2. Identification of the binding site of the benzolactams in the CRD2 activator-binding domain of PKCdelta and discovery of an ILV analogue of improved isozyme selectivity. <i>Journal of Medicinal</i>	8.3	65
244	Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity	8.3	65
243	Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. <i>Molecular Cancer Therapeutics</i> , 2005 , 4, 13-21	6.1	65
242	M-score: a knowledge-based potential scoring function accounting for protein atom mobility. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 5903-11	8.3	62
241	Direct observation of the folding and unfolding of a beta-hairpin in explicit water through computer simulation. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5282-3	16.4	62
240	Synthesis and biology of the conformationally restricted ACPD analogue, 2-aminobicyclo[2.1.1]hexane-2,5-dicarboxylic acid-I, a potent mGluR agonist. <i>Journal of Medicinal</i> Chemistry, 1998 , 41, 1641-50	8.3	62
239	Combined targeting of epidermal growth factor receptor, signal transducer and activator of transcription-3, and Bcl-X(L) enhances antitumor effects in squamous cell carcinoma of the head and neck. <i>Molecular Pharmacology</i> , 2008 , 73, 1632-42	4.3	61
238	BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. <i>PLoS ONE</i> , 2014 , 9, e99404	3.7	61
237	Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 1121	8 ⁸ 1323	11 ⁶¹
236	Preclinical studies of Apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model. <i>Molecular Cancer</i> , 2008 , 7, 20	42.1	60
235	Design, synthesis, and characterization of new embelin derivatives as potent inhibitors of X-linked inhibitor of apoptosis protein. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 5805-8	2.9	60
234	Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins - A review. <i>Drug Discovery Today: Technologies</i> , 2019 , 31, 43-51	7.1	59
233	Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction. Journal of the American Chemical Society, 2009 , 131, 13709-21	16.4	59
232	Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. <i>Molecular Cancer Therapeutics</i> , 2011 , 10, 902-1	46.1	59
231	Phorbol esters and related analogs regulate the subcellular localization of beta 2-chimaerin, a non-protein kinase C phorbol ester receptor. <i>Journal of Biological Chemistry</i> , 2001 , 276, 18303-12	5.4	59
230	Enhancing systematic motion in molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 1999 , 110, 9401-9410	3.9	59

(2001-2020)

Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. <i>Neoplasia</i> , 2020 , 22, 111-119	6.4	58
Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. <i>Cancer Cell</i> , 2017 , 31, 532-548.e7	24.3	57
An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. <i>Molecular Cancer</i> , 2009 , 8, 115	42.1	57
Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 354-359	3.4	57
Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 4664-82	8.3	55
Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 9471-9487	8.3	54
MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. <i>European Journal of Cancer</i> , 2010 , 46, 1122-31	7.5	54
(-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. <i>Molecular Cancer Therapeutics</i> , 2005 , 4, 23-31	6.1	54
Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. <i>Pancreas</i> , 2005 , 31, 317-24	2.6	53
Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. <i>Topics in Medicinal Chemistry</i> , 2012 , 57-79	0.4	51
Synthesis of spirooxindoles via asymmetric 1,3-dipolar cycloaddition. <i>Tetrahedron Letters</i> , 2005 , 46, 59)4 <u>9</u> 2595	1 51
Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. <i>Cell Reports</i> , 2018 , 22, 2236-2245	10.6	50
	10.6	50 50
Prostate Cancer. <i>Cell Reports</i> , 2018 , 22, 2236-2245 Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. <i>Journal of Medicinal</i>		
Prostate Cancer. <i>Cell Reports</i> , 2018 , 22, 2236-2245 Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 5179-85 Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor	8.3	50
Prostate Cancer. <i>Cell Reports</i> , 2018 , 22, 2236-2245 Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 5179-85 Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via Rlick chemistryR <i>Bioorganic and Medicinal Chemistry Letters</i> , 2007 , 17, 3939-42 Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)-Mixed Lineage Leukemia (MLL) Protein-Protein Interaction.	2.9	50
Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 5179-85 Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via Rlick chemistryR <i>Bioorganic and Medicinal Chemistry Letters</i> , 2007 , 17, 3939-42 Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)-Mixed Lineage Leukemia (MLL) Protein-Protein Interaction. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 4818-4839 Synthesis, molecular modeling, and biology of the 1-benzyl derivative of APDC-an apparent mGluR6	8.3 2.9 8.3	50 50 49
	An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. <i>Molecular Cancer</i> , 2009, 8, 115 Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. <i>Journal of Physical Chemistry B</i> , 2000, 104, 354-359 Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. <i>Journal of Medicinal Chemistry</i> , 2012, 55, 4664-82 Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. <i>Journal of Medicinal Chemistry</i> , 2019, 62, 9471-9487 MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. <i>European Journal of Cancer</i> , 2010, 46, 1122-31 (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. <i>Molecular Cancer Therapeutics</i> , 2005, 4, 23-31 Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. <i>Pancreas</i> , 2005, 31, 317-24 Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. <i>Topics in Medicinal Chemistry</i> , 2012, 57-79	An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Molecular Cancer, 2009, 8, 115 Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. Journal of Physical Chemistry B, 2000, 104, 354-359 Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. Journal of Medicinal Chemistry, 2012, 55, 4664-82 Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry, 2019, 62, 9471-9487 MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. European Journal of Cancer, 2010, 46, 1122-31 (-)-Cossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Molecular Cancer Therapeutics, 2005, 4, 23-31 Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas, 2005, 31, 317-24 Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in

211	A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. <i>Nature Communications</i> , 2017 , 8, 1150	17.4	48
210	Interaction of a cyclic, bivalent smac mimetic with the x-linked inhibitor of apoptosis protein. <i>Biochemistry</i> , 2008 , 47, 9811-24	3.2	48
209	Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2005 , 15, 793-7	2.9	48
208	Design of chemically stable, potent, and efficacious MDM2 inhibitors that exploit the retro-mannich ring-opening-cyclization reaction mechanism in spiro-oxindoles. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 10486-98	8.3	47
207	Design of small-molecule Smac mimetics as IAP antagonists. <i>Current Topics in Microbiology and Immunology</i> , 2011 , 348, 89-113	3.3	47
206	TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and invasion in pancreatic cancer. <i>International Journal of Cancer</i> , 2008 , 123, 958-66	7.5	47
205	Identification of a mutant # Na/K-ATPase that pumps but is defective in signal transduction. Journal of Biological Chemistry, 2013 , 288, 13295-304	5.4	46
204	Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. Journal of Medicinal Chemistry, 2001 , 44, 898-908	8.3	46
203	Hydrophobic Binding Hot Spots of Bcl-xL Protein-Protein Interfaces by Cosolvent Molecular Dynamics Simulation. <i>ACS Medicinal Chemistry Letters</i> , 2011 , 2, 280-4	4.3	45
202	TW-37, a small-molecule inhibitor of Bcl-2, mediates S-phase cell cycle arrest and suppresses head and neck tumor angiogenesis. <i>Molecular Cancer Therapeutics</i> , 2009 , 8, 893-903	6.1	45
201	Potent, orally bioavailable diazabicyclic small-molecule mimetics of second mitochondria-derived activator of caspases. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 8158-62	8.3	45
200	Pharmacophore-based discovery of 3,4-disubstituted pyrrolidines as a novel class of monoamine transporter inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2001 , 11, 1113-8	2.9	45
199	Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells. <i>Neoplasia</i> , 2016 , 18, 162-71	6.4	44
198	Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 8502-14	8.3	44
197	A network of substrates of the E3 ubiquitin ligases MDM2 and HUWE1 control apoptosis independently of p53. <i>Science Signaling</i> , 2013 , 6, ra32	8.8	44
196	Molecular modeling and site-directed mutagenesis studies of a phorbol ester-binding site in protein kinase C. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 2541-53	8.3	44
195	AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. <i>Cancer Biology and Therapy</i> , 2012 , 13, 804-11	4.6	43
194	Structure-based design of potent Bcl-2/Bcl-xL inhibitors with strong in vivo antitumor activity. Journal of Medicinal Chemistry, 2012, 55, 6149-61	8.3	43

(2008-2008)

193	Design and characterization of bivalent Smac-based peptides as antagonists of XIAP and development and validation of a fluorescence polarization assay for XIAP containing both BIR2 and BIR3 domains. <i>Analytical Biochemistry</i> , 2008 , 374, 87-98	3.1	42	
192	Structural basis of binding of high-affinity ligands to protein kinase C: prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis. Journal of Medicinal Chemistry, 2001, 44, 1690-701	8.3	42	
191	A covalently bound inhibitor triggers EZH2 degradation through CHIP-mediated ubiquitination. <i>EMBO Journal</i> , 2017 , 36, 1243-1260	13	41	
190	LDK378: a promising anaplastic lymphoma kinase (ALK) inhibitor. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 5673-4	8.3	41	
189	p53-mediated heterochromatin reorganization regulates its cell fate decisions. <i>Nature Structural and Molecular Biology</i> , 2012 , 19, 478-84, S1	17.6	41	
188	Hepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses. <i>Diabetes</i> , 2012 , 61, 566-73	0.9	41	
187	Role of hydrophobic residues in the C1b domain of protein kinase C delta on ligand and phospholipid interactions. <i>Journal of Biological Chemistry</i> , 2001 , 276, 19580-7	5.4	41	
186	Conformationally constrained analogues of diacylglycerol. 10. Ultrapotent protein kinase C ligands based on a racemic 5-disubstituted tetrahydro-2-furanone template. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 19-28	8.3	41	
185	Pyrogallol-based molecules as potent inhibitors of the antiapoptotic Bcl-2 proteins. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 1723-6	8.3	40	
184	CHMIS-C: a comprehensive herbal medicine information system for cancer. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 1481-8	8.3	40	
183	Development of Highly Potent, Selective, and Cellular Active Triazolo[1,5-a]pyrimidine-Based Inhibitors Targeting the DCN1-UBC12 Protein-Protein Interaction. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 2772-2797	8.3	39	
182	Nonpeptidic and potent small-molecule inhibitors of cIAP-1/2 and XIAP proteins. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 6361-7	8.3	39	
181	Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 210-7	4.7	39	
180	Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 7510-7528	8.3	38	
179	MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency. <i>Cell Stem Cell</i> , 2016 , 18, 481-94	18	38	
178	Potent bivalent Smac mimetics: effect of the linker on binding to inhibitor of apoptosis proteins (IAPs) and anticancer activity. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 3306-18	8.3	38	
177	Design, synthesis, and evaluation of potent, nonpeptidic mimetics of second mitochondria-derived activator of caspases. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 593-6	8.3	38	
176	Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. <i>Cancer Biology and Therapy</i> , 2008 , 7, 1418-26	4.6	38	

175	Discovery of a novel nonphosphorylated pentapeptide motif displaying high affinity for Grb2-SH2 domain by the utilization of 3Rsubstituted tyrosine derivatives. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 1585-96	8.3	38
174	Design of the First-in-Class, Highly Potent Irreversible Inhibitor Targeting the Menin-MLL Protein-Protein Interaction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1601-1605	16.4	37
173	Competitive and Reversible Binding of a Guest Molecule to Its Host in Aqueous Solution through Molecular Dynamics Simulation: Benzyl Alcohol/ECyclodextrin System. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4863-4872	3.4	37
172	Iridals are a novel class of ligands for phorbol ester receptors with modest selectivity for the RasGRP receptor subfamily. <i>Journal of Medicinal Chemistry</i> , 2001 , 44, 3872-80	8.3	37
171	Elucidation of Acquired Resistance to Bcl-2 and MDM2 Inhibitors in Acute Leukemia In Vitro and In Vivo. <i>Clinical Cancer Research</i> , 2015 , 21, 2558-68	12.9	36
170	Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases. <i>Molecular Cancer Therapeutics</i> , 2011 , 10, 658-69	6.1	36
169	Structure-based design of flavonoid compounds as a new class of small-molecule inhibitors of the anti-apoptotic Bcl-2 proteins. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 3163-6	8.3	36
168	Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential. <i>Journal of Chemical Physics</i> , 1999 , 111, 4359-4361	3.9	36
167	Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. <i>European Journal of Medicinal Chemistry</i> , 2016 , 108, 229-244	6.8	35
166	Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine Direceptor antagonists. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 4962-8	8.3	35
165	Critical role of prostate apoptosis response-4 in determining the sensitivity of pancreatic cancer cells to small-molecule inhibitor-induced apoptosis. <i>Molecular Cancer Therapeutics</i> , 2008 , 7, 2884-93	6.1	35
164	Molecular modeling of the interactions of glutamate carboxypeptidase II with its potent NAAG-based inhibitors. <i>Journal of Medicinal Chemistry</i> , 2002 , 45, 4140-52	8.3	35
163	Conformationally constrained analogues of diacylglycerol. 11. Ultrapotent protein kinase C ligands based on a chiral 5-disubstituted tetrahydro-2-furanone template. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 29-35	8.3	35
162	Structure-Based Design of a New Class of Protein Kinase C Modulators. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6629-6630	16.4	34
161	Design, synthesis, and evaluation of tricyclic, conformationally constrained small-molecule mimetics of second mitochondria-derived activator of caspases. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 7352-5	8.3	34
160	A small molecule compound inhibits AKT pathway in ovarian cancer cell lines. <i>Gynecologic Oncology</i> , 2006 , 100, 308-17	4.9	34
159	Conformationally constrained analogues of diacylglycerol. 12. Ultrapotent protein kinase C ligands based on a chiral 4,4-disubstituted heptono-1,4-lactone template. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 36-45	8.3	34
158	Protein kinase C. Modeling of the binding site and prediction of binding constants. <i>Journal of Medicinal Chemistry</i> , 1994 , 37, 1326-38	8.3	34

157	Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics. <i>Journal of Mammary Gland Biology and Neoplasia</i> , 2012 , 17, 217-28	2.4	33	
156	-(-)Gossypol promotes the apoptosis of bladder cancer cells in vitro. <i>Pharmacological Research</i> , 2008 , 58, 323-31	10.2	33	
155	The transition from a pharmacophore-guided approach to a receptor-guided approach in the design of potent protein kinase C ligands 1999 , 82, 251-61		33	
154	MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner. <i>Neoplasia</i> , 2016 , 18, 213-22	6.4	33	
153	Synthesis and anticholinesterase activity of huperzine A analogues containing phenol and catechol replacements for the pyridone ring. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1998 , 8, 1413-8	2.9	32	•
152	High-Affinity Peptidomimetic Inhibitors of the DCN1-UBC12 Protein-Protein Interaction. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 1934-1950	8.3	31	
151	Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. <i>Cell Discovery</i> , 2016 , 2, 16036	22.3	31	
150	A potent and highly efficacious Bcl-2/Bcl-xL inhibitor. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 3048-30	68 .3	31	
149	LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNF\(\text{Le}\)xpression and receptor tyrosine kinase signaling. Cancer Research, 2012, 72, 1229-38	10.1	31	
148	Cyclopeptide Smac mimetics as antagonists of IAP proteins. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 3043-6	2.9	31	
147	Structure-based discovery of nonpeptidic small organic compounds to block the T cell response to myelin basic protein. <i>Journal of Medicinal Chemistry</i> , 2004 , 47, 4989-97	8.3	31	
146	Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2016 , 54, 482-92	5.7	30	
145	BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice. <i>Blood</i> , 2015 , 125, 2724-8	2.2	30	
144	Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 308-12	4.3	30	
143	Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions. <i>Journal of Biological Chemistry</i> , 2010 , 285, 21023-36	5.4	30	
142	Analysis of the interaction of BCL9 with beta-catenin and development of fluorescence polarization and surface plasmon resonance binding assays for this interaction. <i>Biochemistry</i> , 2009 , 48, 9534-41	3.2	30	
141	Bivalent Smac mimetics with a diazabicyclic core as highly potent antagonists of XIAP and cIAP1/2 and novel anticancer agents. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 106-14	8.3	29	
140	A potent bivalent Smac mimetic (SM-1200) achieving rapid, complete, and durable tumor regression in mice. <i>Journal of Medicinal Chemistry</i> , 2013 , 56, 3969-79	8.3	29	

139	AM-8553: a novel MDM2 inhibitor with a promising outlook for potential clinical development. Journal of Medicinal Chemistry, 2012 , 55, 4934-5	8.3	28
138	Recognition and interaction of small rings with the ricin A-chain binding site. <i>Proteins: Structure, Function and Bioinformatics</i> , 1998 , 31, 33-41	4.2	28
137	Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2001 , 11, 955-9	2.9	28
136	Design, synthesis, and evaluation of potent and selective ligands for the dopamine 3 (D3) receptor with a novel in vivo behavioral profile. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 5905-8	8.3	27
135	A small molecule that disrupts Mdm2-p53 binding activates p53, induces apoptosis and sensitizes lung cancer cells to chemotherapy. <i>Cancer Biology and Therapy</i> , 2008 , 7, 845-52	4.6	27
134	Identification of the fibroblast growth factor (FGF)-interacting domain in a secreted FGF-binding protein by phage display. <i>Journal of Biological Chemistry</i> , 2006 , 281, 1137-44	5.4	27
133	Folding Studies of a Linear Pentamer Peptide Adopting a Reverse Turn Conformation in Aqueous Solution through Molecular Dynamics Simulation. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8023-8034	3.4	27
132	Potent and selective small-molecule inhibitors of cIAP1/2 proteins reveal that the binding of Smac mimetics to XIAP BIR3 is not required for their effective induction of cell death in tumor cells. <i>ACS Chemical Biology</i> , 2014 , 9, 994-1002	4.9	26
131	Behavioral sensitization to cocaine in rats: evidence for temporal differences in dopamine D3 and D2 receptor sensitivity. <i>Psychopharmacology</i> , 2011 , 215, 609-20	4.7	26
130	Smac-mimetic compound SM-164 induces radiosensitization in breast cancer cells through activation of caspases and induction of apoptosis. <i>Breast Cancer Research and Treatment</i> , 2012 , 133, 189	9 494	25
129	Pyrimido[4,5-d]pyrimidin-4(1H)-one derivatives as selective inhibitors of EGFR threonine790 to methionine790 (T790M) mutants. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8387-90	16.4	25
128	Web-based tools for mining the NCI databases for anticancer drug discovery. <i>Journal of Chemical Information and Computer Sciences</i> , 2004 , 44, 249-57		25
127	Synthesis and biology of the rigidified glutamate analogue, trans-2-carboxyazetidine-3-acetic acid (t-CAA). <i>Bioorganic and Medicinal Chemistry Letters</i> , 1996 , 6, 2559-2564	2.9	25
126	MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program. <i>Cell Discovery</i> , 2016 , 2, 16008	22.3	24
125	Computational analysis of protein hotspots. ACS Medicinal Chemistry Letters, 2010, 1, 125-9	4.3	24
124	The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to MDM2 inhibitor-mediated apoptosis. <i>Cell Cycle</i> , 2008 , 7, 971-	94.7	24
123	Enantiomerically pure hexahydropyrazinoquinolines as potent and selective dopamine 3 subtype receptor ligands. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 3171-81	8.3	24
122	Efficient synthesis of isoflavone analogues via a Suzuki coupling reaction. <i>Tetrahedron Letters</i> , 2005 , 46, 3707-3709	2	24

(2010-2017)

121	Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. <i>Journal of Medicinal</i>	8.3	23	
120	Chemistry, 2017 , 60, 3887-3901 Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. <i>Clinical Cancer Research</i> , 2016 , 22, 5383-5393	12.9	23	
119	Design of novel hexahydropyrazinoquinolines as potent and selective dopamine D3 receptor ligands with improved solubility. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 443-6	2.9	23	
118	Synthesis and protein kinase C binding activity of benzolactam-V7. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1999 , 9, 1371-4	2.9	23	
117	Probing the binding of indolactam-V to protein kinase C through site-directed mutagenesis and computational docking simulations. <i>Journal of Medicinal Chemistry</i> , 1999 , 42, 3436-46	8.3	23	
116	A phase II trial of the BCL-2 homolog domain 3 mimetic AT-101 in combination with docetaxel for recurrent, locally advanced, or metastatic head and neck cancer. <i>Investigational New Drugs</i> , 2016 , 34, 481-9	4.3	22	
115	Therapeutic Inhibition of the MDM2-p53 Interaction Prevents Recurrence of Adenoid Cystic Carcinomas. <i>Clinical Cancer Research</i> , 2017 , 23, 1036-1048	12.9	22	
114	Design, synthesis, and evaluation of peptidomimetics containing Freidinger lactams as STAT3 inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 1733-6	2.9	22	
113	Pharmacophore-based discovery, synthesis, and biological evaluation of 4-phenyl-1-arylalkyl piperidines as dopamine transporter inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2001 , 11, 495-500	2.9	22	
112	A web-based 3D-database pharmacophore searching tool for drug discovery. <i>Journal of Chemical Information and Computer Sciences</i> , 2002 , 42, 192-8		22	
111	Targeted degradation of activating estrogen receptor Higand-binding domain mutations in human breast cancer. <i>Breast Cancer Research and Treatment</i> , 2020 , 180, 611-622	4.4	22	
110	Computational elucidation of the structural basis of ligand binding to the dopamine 3 receptor through docking and homology modeling. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 4470-6	8.3	21	
109	Resiniferatoxin-amide and analogues as ligands for protein kinase C and vanilloid receptors and determination of their biological activities as vanilloids. <i>Journal of Neurochemistry</i> , 1995 , 65, 301-18	6	21	
108	Structural basis of RasGRP binding to high-affinity PKC ligands. <i>Journal of Medicinal Chemistry</i> , 2002 , 45, 853-60	8.3	21	
107	Reactivation of p53 by MDM2 Inhibitor MI-77301 for the Treatment of Endocrine-Resistant Breast Cancer. <i>Molecular Cancer Therapeutics</i> , 2016 , 15, 2887-2893	6.1	20	
106	Conformationally constrained analogues of diacylglycerol (DAG). 15. The indispensable role of the sn-1 and sn-2 carbonyls in the binding of DAG-lactones to protein kinase C (PK-C). <i>Bioorganic and Medicinal Chemistry Letters</i> , 1998 , 8, 3403-8	2.9	20	
105	Effects of pramipexole on the reinforcing effectiveness of stimuli that were previously paired with cocaine reinforcement in rats. <i>Psychopharmacology</i> , 2012 , 219, 123-35	4.7	19	
104	Smac mimetic compounds potentiate interleukin-1beta-mediated cell death. <i>Journal of Biological Chemistry</i> , 2010 , 285, 40612-23	5.4	19	

103	AT-101 (R-(-)-gossypol acetic acid) enhances the effectiveness of androgen deprivation therapy in the VCaP prostate cancer model. <i>Journal of Cellular Biochemistry</i> , 2010 , 110, 1187-94	4.7	19
102	Design, synthesis and structure-activity relationship studies of hexahydropyrazinoquinolines as a novel class of potent and selective dopamine receptor 3 (D3) ligands. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2005 , 15, 1701-5	2.9	19
101	Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment. <i>PLoS ONE</i> , 2015 , 10, e0128807	3.7	19
100	A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. <i>Neoplasia</i> , 2020 , 22, 522-532	6.4	19
99	Molecular modeling, structureactivity relationships and functional antagonism studies of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketones as a novel class of dopamine transporter inhibitors. <i>Bioorganic and Medicinal Chemistry</i> , 2001 , 9, 1753-64	3.4	18
98	Graph theory and group contributions in the estimation of boiling points. <i>Journal of Chemical Information and Computer Sciences</i> , 1994 , 34, 1242-50		18
97	Potent 5-Cyano-6-phenyl-pyrimidin-Based Derivatives Targeting DCN1-UBE2M Interaction. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 5382-5403	8.3	17
96	Formation of a novel reversible cytochrome P450 spectral intermediate: role of threonine 303 in P450 2E1 inactivation. <i>Biochemistry</i> , 2004 , 43, 11942-52	3.2	17
95	Functional and Mechanistic Interrogation of BET Bromodomain Degraders for the Treatment of Metastatic Castration-resistant Prostate Cancer. <i>Clinical Cancer Research</i> , 2019 , 25, 4038-4048	12.9	16
94	Conformationally constrained analogues of diacylglycerol (DAG). 14. Dissection of the roles of the sn-1 and sn-2 carbonyls in DAG mimetics by isopharmacophore replacement. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1998 , 8, 1757-62	2.9	16
93	Follicular lymphoma-associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. <i>Journal of Clinical Investigation</i> , 2019 , 129, 1626-1640	15.9	16
92	Design of High-Affinity Stapled Peptides To Target the Repressor Activator Protein 1 (RAP1)/Telomeric Repeat-Binding Factor 2 (TRF2) Protein-Protein Interaction in the Shelterin Complex. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 328-34	8.3	15
91	Structure-Based Discovery of CF53 as a Potent and Orally Bioavailable Bromodomain and Extra-Terminal (BET) Bromodomain Inhibitor. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 6110-6120	8.3	15
90	Physiologically based pharmacokinetic and pharmacodynamic modeling of an antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in a mouse xenograft model of human breast cancer. <i>Biopharmaceutics and Drug Disposition</i> , 2013 , 34, 348-59	1.7	15
89	CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist. <i>ACS Medicinal Chemistry Letters</i> , 2011 , 2, 620-625	4.3	15
88	A dual-readout F2 assay that combines fluorescence resonance energy transfer and fluorescence polarization for monitoring bimolecular interactions. <i>Assay and Drug Development Technologies</i> , 2011 , 9, 382-93	2.1	15
87	A systematic analysis of the effect of small-molecule binding on protein flexibility of the ligand-binding sites. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 5648-50	8.3	15
86	SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells. <i>Oncotarget</i> , 2015 , 6, 37410-25	3.3	15

85	EEDi-5285: An Exceptionally Potent, Efficacious, and Orally Active Small-Molecule Inhibitor of Embryonic Ectoderm Development. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 7252-7267	8.3	14
84	BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of Mcl-1. <i>Cancer Research</i> , 2020 , 80, 2380-2393	10.1	14
83	Metronomic dosing of BH3 mimetic small molecule yields robust antiangiogenic and antitumor effects. <i>Cancer Research</i> , 2012 , 72, 716-25	10.1	14
82	Anti-oxidant treatment enhances anti-tumor cytotoxicity of (-)-gossypol. <i>Cancer Biology and Therapy</i> , 2008 , 7, 767-76	4.6	14
81	Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP). <i>Biochemical Pharmacology</i> , 2007 , 73, 15-24	6	14
80	Strategies toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 12831-12854	8.3	14
79	Structure-Based Discovery of M-89 as a Highly Potent Inhibitor of the Menin-Mixed Lineage Leukemia (Menin-MLL) Protein-Protein Interaction. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 6015-6034	8.3	13
78	Discovery of M-808 as a Highly Potent, Covalent, Small-Molecule Inhibitor of the Menin-MLL Interaction with Strong Antitumor Activity. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 4997-5010	8.3	13
77	A sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. <i>Molecular Carcinogenesis</i> , 2013 , 52 Suppl 1, E80-6	5	13
76	A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. <i>Annals of Hematology</i> , 2007 , 86, 471-81	3	13
75	Discovery of substituted 3,4-diphenyl-thiazoles as a novel class of monoamine transporter inhibitors through 3-D pharmacophore search using a new pharmacophore model derived from mazindol. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2002 , 12, 1775-8	2.9	13
74	Ablation of Cancer Stem Cells by Therapeutic Inhibition of the MDM2-p53 Interaction in Mucoepidermoid Carcinoma. <i>Clinical Cancer Research</i> , 2019 , 25, 1588-1600	12.9	13
73	The Direct Molecular Target for Imipridone ONC201 Is Finally Established. Cancer Cell, 2019, 35, 707-70	824.3	12
72	Metronomic small molecule inhibitor of Bcl-2 (TW-37) is antiangiogenic and potentiates the antitumor effect of ionizing radiation. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 78, 879-87	4	12
71	Synthesis of 8-Oxa analogues of norcocaine endowed with interesting cocaine-like activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 1999 , 9, 1831-6	2.9	12
70	Applications of computers to toxicological research. <i>Chemical Research in Toxicology</i> , 1993 , 6, 748-53	4	12
69	Role of BET proteins in castration-resistant prostate cancer. <i>Drug Discovery Today: Technologies</i> , 2016 , 19, 29-38	7.1	12
68	Changing the Apoptosis Pathway through Evolutionary Protein Design. <i>Journal of Molecular Biology</i> , 2019 , 431, 825-841	6.5	12

67	Discovery of ARD-2585 as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 13487-13509	8.3	12
66	IAPs protect host target tissues from graft-versus-host disease in mice. <i>Blood Advances</i> , 2017 , 1, 1517-1	15/38	11
65	High-affinity and selective dopamine Direceptor full agonists. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 5612-7	2.9	11
64	Molecular modeling in the discovery of drug leads. <i>Journal of Chemical Information and Computer Sciences</i> , 1996 , 36, 726-30		11
63	Conformationally constrained analogues of diacylglycerol. 6. Changes in PK-C binding affinity for 3-O-acyl-2-deoxy-L-ribonolactones bearing different acyl chains <i>Bioorganic and Medicinal Chemistry Letters</i> , 1994 , 4, 355-360	2.9	11
62	The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. <i>Nature Immunology</i> , 2021 , 22, 460-470	19.1	11
61	BH3-mimetic small molecule inhibits the growth and recurrence of adenoid cystic carcinoma. <i>Oral Oncology</i> , 2015 , 51, 839-47	4.4	10
60	Targeting MDM2 for Treatment of Adenoid Cystic Carcinoma. <i>Clinical Cancer Research</i> , 2016 , 22, 3550-9	12.9	10
59	In vitro metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin in human liver microsomes. <i>Drug Metabolism and Disposition</i> , 2011 , 39, 627-35	4	10
58	Design and synthesis of a 1,5-diazabicyclo[6,3,0] dodecane amino acid derivative as a novel dipeptide reverse-turn mimetic. <i>Tetrahedron Letters</i> , 2006 , 47, 4769-4770	2	10
57	Prediction of geometries and interaction energies of complexes formed by small molecules using semiempirical and ab initio methods. <i>Computational and Theoretical Chemistry</i> , 1994 , 309, 279-294		10
56	Casein kinase-1 1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3. <i>Cell Death and Disease</i> , 2019 , 10, 923	9.8	10
55	Bioinformatics-based discovery and characterization of an AKT-selective inhibitor 9-chloro-2-methylellipticinium acetate (CMEP) in breast cancer cells. <i>Cancer Letters</i> , 2007 , 252, 244-58	9.9	9
54	Allosteric Inactivation of Polycomb Repressive Complex 2 (PRC2) by Inhibiting Its Adapter Protein: Embryonic Ectodomain Development (EED). <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 2212-2214	8.3	8
53	Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming. <i>Journal of Biological Chemistry</i> , 2019 , 294, 9134-9146	5.4	8
52	Pramipexole derivatives as potent and selective dopamine D(3) receptor agonists with improved human microsomal stability. <i>ChemMedChem</i> , 2014 , 9, 2653-60	3.7	8
51	Induction of p53 suppresses chronic myeloid leukemia. <i>Leukemia and Lymphoma</i> , 2017 , 58, 1-14	1.9	7
50	p27 degradation by an ellipticinium series of compound via ubiquitin-proteasome pathway. <i>Cancer Biology and Therapy</i> , 2007 , 6, 360-6	4.6	7

49	Discovery of EEDi-5273 as an Exceptionally Potent and Orally Efficacious EED Inhibitor Capable of Achieving Complete and Persistent Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 14540-	18 3 56	7
48	Discovery of CJ-2360 as a Potent and Orally Active Inhibitor of Anaplastic Lymphoma Kinase Capable of Achieving Complete Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 13994-140	1 ^{8.3}	7
47	Follicular Lymphoma-associated BTK Mutations are Inactivating Resulting in Augmented AKT Activation. <i>Clinical Cancer Research</i> , 2021 , 27, 2301-2313	12.9	7
46	Discovery of Potent Small-Molecule Inhibitors of MLL Methyltransferase. <i>ACS Medicinal Chemistry Letters</i> , 2020 , 11, 1348-1352	4.3	6
45	Efficient synthesis of phosphotyrosine building blocks using imidazolium trifluoroacetate. <i>Tetrahedron Letters</i> , 2009 , 50, 6691-6692	2	6
44	An efficient synthesis of optically pure (S)-2-functionalized 1,2,3,4-tetrahydroquinoline. <i>Tetrahedron Letters</i> , 2004 , 45, 1027-1029	2	6
43	Design, synthesis, and evaluation of hexahydrobenz[f]isoquinolines as a novel class of dopamine 3 receptor ligands. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2004 , 14, 5813-6	2.9	6
42	Solution Conformations of Wild-Type and Mutated Bak BH3 Peptides via Dynamical Conformational Sampling and Implication to Their Binding to Antiapoptotic Bcl-2 Proteins. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1467-1477	3.4	6
41	2,3-Disubstituted quinuclidines as a novel class of dopamine transporter inhibitors. <i>Bioorganic and Medicinal Chemistry</i> , 2003 , 11, 1123-36	3.4	6
40	Inducing Protein Degradation as a Therapeutic Strategy. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 5129-	330 3	6
39	Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 14895-14911	8.3	6
38	Characterizing the Therapeutic Potential of a Potent BET Degrader in Merkel Cell Carcinoma. <i>Neoplasia</i> , 2019 , 21, 322-330	6.4	5
37	Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction. <i>ACS Medicinal Chemistry Letters</i> , 2018 , 9, 507-511	4.3	5
36	Optimization and validation of mitochondria-based functional assay as a useful tool to identify BH3-like molecules selectively targeting anti-apoptotic Bcl-2 proteins. <i>BMC Biotechnology</i> , 2013 , 13, 45	3.5	5
35	Identification of novel neuroprotective agents using pharmacophore modeling. <i>Chemistry and Biodiversity</i> , 2005 , 2, 1564-70	2.5	5
34	Structure-based design of conformationally constrained cyclic peptidomimetics to target the MLL1-WDR5 proteinprotein interaction as inhibitors of the MLL1 methyltransferase activity. <i>Chinese Chemical Letters</i> , 2015 , 26, 455-458	8.1	4
33	Correction to CSAR Benchmark Exercise of 2010: Selection of the ProteinLigand Complexes. Journal of Chemical Information and Modeling, 2011 , 51, 2146-2146	6.1	4
32	Topography of transcriptionally active chromatin in glioblastoma. Science Advances, 2021, 7,	14.3	4

31	Abstract LB-204: Highly potent and optimized small-molecule inhibitors of MDM2 achieve complete tumor regression in animal models of solid tumors and leukemia. 2011 ,		3
30	Case Study: discovery of inhibitors of the MDM2-p53 protein-protein interaction. <i>Methods in Molecular Biology</i> , 2015 , 1278, 567-85	1.4	3
29	Targeting DCN1-UBC12 Protein-Protein Interaction for Regulation of Neddylation Pathway. <i>Advances in Experimental Medicine and Biology</i> , 2020 , 1217, 349-362	3.6	3
28	SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression. <i>ACS Medicinal Chemistry Letters</i> , 2021 , 12, 996-1004	4.3	3
27	Discovery of M-1121 as an Orally Active Covalent Inhibitor of Menin-MLL Interaction Capable of Achieving Complete and Long-Lasting Tumor Regression. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 1033	3 8 -∮03	49
26	Design and synthesis of a potent biotinylated Smac mimetic. <i>Tetrahedron Letters</i> , 2005 , 46, 7015-7018	2	2
25	BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. <i>Oncogene</i> , 2021 , 40, 6566-6578	9.2	2
24	Selectively Targeting Tropomyosin Receptor Kinase A (TRKA) via PROTACs. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 14560-14561	8.3	2
23	Potency and Selectivity Optimization of Tryptophanol-Derived Oxazoloisoindolinones: Novel p53 Activators in Human Colorectal Cancer. <i>ChemMedChem</i> , 2021 , 16, 250-258	3.7	2
22	Design of the First-in-Class, Highly Potent Irreversible Inhibitor Targeting the Menin-MLL Protein Protein Interaction. <i>Angewandte Chemie</i> , 2018 , 130, 1617-1621	3.6	1
21	Chapter 11 Recent Advances in Design of Small-Molecule Ligands to Target Protein Protein Interactions. <i>Annual Reports in Computational Chemistry</i> , 2006 , 197-219	1.8	1
20	Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. <i>Nature Communications</i> , 2021 , 12, 2621	17.4	1
19	Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-X dual inhibitor that induces Bax-dependent apoptosis <i>Neoplasia</i> , 2022 , 29, 100798	6.4	O
18	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
17	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
16	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
15	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Energy & Description</i> 2020, 34, 5107-5108	4.1	
14	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. Organometallics, 2020 , 39, 1665-	16&6	

Basic Principles and Practices of Computer-Aided Drug Design259-278

12	Case Study: Inhibitors of the MDM2-p53 Protein P rotein Interaction 2010 , 273-293	
11	Anti- Mycobacterium avium Activity of Quinolones: In Vitro Activities. <i>Antimicrobial Agents and Chemotherapy</i> , 1993 , 37, 2766-2766	5.9
10	Bicyclic Peptide Inhibitors of an Epithelial Cell-Derived Transmembrane Protease, Matriptase 2001 , 56	1-562
9	Comprehensive Biomarker and Genomic Analysis Identifies p53 Status as the Major Determinant of Response to MDM2 Inhibitors in Chronic Lymphocytic Leukemia <i>Blood</i> , 2007 , 110, 224-224	2.2
8	Evaluation of TW-37, a pan Bcl-2 Proteins Small-Molecule Inhibitor, Against Spectrum of Human B-Cell Lines and Patient-Derived Samples <i>Blood</i> , 2007 , 110, 4521-4521	2.2
7	Functional Analyses of BTK Mutations in Follicular Lymphoma. <i>Blood</i> , 2017 , 130, 647-647	2.2
6	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7
5	Characterization of C-10 Substituted Analogues of Huperzine A as Inhibitors of Cholinesterases. <i>Advances in Behavioral Biology</i> , 1998 , 601-605	
4	Analysis of 54 Follicular Lymphomas By Whole Exome Sequencing Identifies Multiple Novel Recurrently Mutated Pathways. <i>Blood</i> , 2015 , 126, 112-112	2.2
3	Functional Analyses of V-Atpase Mutations in Follicular Lymphoma. <i>Blood</i> , 2016 , 128, 1762-1762	2.2
2	Dopamine D2/3 receptor partial agonists failed to produce antidepressant-like effects in the rat forced swim test. <i>FASEB Journal</i> , 2009 , 23, 745.6	0.9
1	The novel BET degrader, QCA570, is highly active against the growth of human NSCLC cells and synergizes with osimertinib in suppressing osimertinib-resistant EGFR-mutant NSCLC cells <i>American Journal of Cancer Research</i> , 2022 , 12, 779-792	4.4