Patrick A Leighton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65981/publications.pdf

Version: 2024-02-01

41 papers 1,394 citations

394421 19 h-index 345221 36 g-index

42 all docs 42 docs citations

42 times ranked 1261 citing authors

#	Article	IF	CITATIONS
1	Fine-scale determinants of the spatiotemporal distribution of Ixodes scapularis in Quebec (Canada). Ticks and Tick-borne Diseases, 2022, 13, 101833.	2.7	14
2	Current and future distribution of Ixodes scapularis ticks in Québec: Field validation of a predictive model. PLoS ONE, 2022, 17, e0263243.	2.5	14
3	Context-dependent host dispersal and habitat fragmentation determine heterogeneity in infected tick burdens: an agent-based modelling study. Royal Society Open Science, 2022, 9, 220245.	2.4	5
4	Transmission patterns of tick-borne pathogens among birds and rodents in a forested park in southeastern Canada. PLoS ONE, 2022, 17, e0266527.	2.5	10
5	Are foxes (Vulpes spp.) good sentinel species for Toxoplasma gondii in northern Canada?. Parasites and Vectors, 2022, 15, 115.	2.5	7
6	Sentinel Surveillance Contributes to Tracking Lyme Disease Spatiotemporal Risk Trends in Southern Quebec, Canada. Pathogens, 2022, 11, 531.	2.8	4
7	The utility of a maximum entropy species distribution model for Ixodes scapularis in predicting the public health risk of Lyme disease in Ontario, Canada. Ticks and Tick-borne Diseases, 2022, 13, 101969.	2.7	4
8	Capture-Recapture Reveals Heterogeneity in Habitat-Specific Mongoose Densities and Spatiotemporal Variability in Trapping Success in St. Kitts, West Indies. Caribbean Journal of Science, 2022, 52, .	0.3	3
9	Modeling Mongoose Rabies in the Caribbean: A Model-Guided Fieldwork Approach to Identify Research Priorities. Viruses, 2021, 13, 323.	3 . 3	11
10	Understanding rabies persistence in low-density fox populations. Ecoscience, 2021, 28, 301-312.	1.4	3
11	Mechanistic movement models reveal ecological drivers of tick-borne pathogen spread. Journal of the Royal Society Interface, 2021, 18, 20210134.	3.4	7
12	Mosquitoes Know No Borders: Surveillance of Potential Introduction of Aedes Species in Southern Québec, Canada. Pathogens, 2021, 10, 998.	2.8	8
13	Host and geographic differences in prevalence and diversity of gastrointestinal helminths of foxes (Vulpes vulpes), coyotes (Canis latrans) and wolves (Canis lupus) in Québec, Canada. International Journal for Parasitology: Parasites and Wildlife, 2021, 16, 126-137.	1.5	3
14	REVENGE OF THE TREES: ENVIRONMENTAL DETERMINANTS AND POPULATION EFFECTS OF INFECTIOUS DISEASE OUTBREAKS ON A BREEDING COLONY OF DOUBLE-CRESTED CORMORANTS (PHALACROCORAX) TJ ET	`Qq ©.® 0 r	gBTL/Overlock
15	Genetic Melting Pot in Blacklegged Ticks at the Northern Edge of their Expansion Front. Journal of Heredity, 2020, 111, 371-378.	2.4	2
16	Serological and molecular detection of Toxoplasma gondii in terrestrial and marine wildlife harvested for food in Nunavik, Canada. Parasites and Vectors, 2019, 12, 155.	2. 5	28
17	Short-term Forecasting of Daily Abundance of West Nile Virus Vectors Culex pipiens-restuans (Diptera: Culicidae) and Aedes vexans Based on Weather Conditions in Southern Québec (Canada). Journal of Medical Entomology, 2019, 56, 859-872.	1.8	12
18	A framework for adaptive surveillance of emerging tick-borne zoonoses. One Health, 2019, 7, 100083.	3.4	18

#	Article	IF	CITATIONS
19	Detection of municipalities at-risk of Lyme disease using passive surveillance of Ixodes scapularis as an early signal: A province-specific indicator in Canada. PLoS ONE, 2019, 14, e0212637.	2.5	26
20	Landscape determinants of density of blacklegged ticks, vectors of Lyme disease, at the northern edge of their distribution in Canada. Scientific Reports, 2019, 9, 16652.	3.3	22
21	Individual vigilance profiles in flocks of House Sparrows (<i>Passerdomesticus</i>). Canadian Journal of Zoology, 2018, 96, 1016-1023.	1.0	7
22	High-Resolution Ecological Niche Modeling of (i>Ixodes scapularis (li>Ticks Based on Passive Surveillance Data at the Northern Frontier of Lyme Disease Emergence in North America. Vector-Borne and Zoonotic Diseases, 2018, 18, 235-242.	1.5	49
23	Passive Tick Surveillance Provides an Accurate Early Signal of Emerging Lyme Disease Risk and Human Cases in Southern Canada. Journal of Medical Entomology, 2018, 55, 1016-1026.	1.8	60
24	Integrated Social-Behavioral and Ecological Risk Maps to Prioritize Local Public Health Responses to Lyme Disease. Environmental Health Perspectives, 2018, 126, 047008.	6.0	27
25	Multi-Scale Clustering of Lyme Disease Risk at the Expanding Leading Edge of the Range of Ixodes scapularis in Canada. International Journal of Environmental Research and Public Health, 2018, 15, 603.	2.6	18
26	Host functional connectivity and the spread potential of Lyme disease. Landscape Ecology, 2018, 33, 1925-1938.	4.2	15
27	Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Québec, Canada. PLoS ONE, 2018, 13, e0201924.	2.5	39
28	Spread of false alarms in foraging flocks of house sparrows. Ethology, 2017, 123, 526-531.	1.1	7
29	Practices of Lyme disease diagnosis and treatment by general practitioners in Quebec, 2008–2015. BMC Family Practice, 2017, 18, 65.	2.9	18
30	Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLoS ONE, 2017, 12, e0189393.	2.5	83
31	Analysis of the human population bitten by Ixodes scapularis ticks in Quebec, Canada: Increasing risk of Lyme disease. Ticks and Tick-borne Diseases, 2016, 7, 1075-1081.	2.7	24
32	Geography, Deer, and Host Biodiversity Shape the Pattern of Lyme Disease Emergence in the Thousand Islands Archipelago of Ontario, Canada. PLoS ONE, 2014, 9, e85640.	2.5	83
33	Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector <i>lxodes scapularis</i> . Environmental Health Perspectives, 2014, 122, 631-638.	6.0	170
34	Climate change and habitat fragmentation drive the occurrence of <i><scp>B</scp>orrelia burgdorferi</i> , the agent of Lyme disease, at the northeastern limit of its distribution. Evolutionary Applications, 2014, 7, 750-764.	3.1	122
35	Does high biodiversity reduce the risk of Lyme disease invasion?. Parasites and Vectors, 2013, 6, 195.	2.5	40
36	Predicting the rate of invasion of the agent of Lyme disease <i>Borrelia burgdorferi</i> . Journal of Applied Ecology, 2013, 50, 510-518.	4.0	74

#	Article	IF	CITATIONS
37	Passive Surveillance for I. scapularis Ticks: Enhanced Analysis for Early Detection of Emerging Lyme Disease Risk. Journal of Medical Entomology, 2012, 49, 400-409.	1.8	64
38	Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector <i>lxodes scapularis</i> in Canada. Journal of Applied Ecology, 2012, 49, 457-464.	4.0	196
39	Conservation and the scarecrow effect: Can human activity benefit threatened species by displacing predators?. Biological Conservation, 2010, 143, 2156-2163.	4.1	49
40	How depth alters detection and capture of buried prey: exploitation of sea turtle eggs by mongooses. Behavioral Ecology, 2009, 20, 1299-1306.	2.2	23
41	Predicting species interactions from edge responses: mongoose predation on hawksbill sea turtle nests in fragmented beach habitat. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2465-2472.	2.6	24