David J Brayden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6597857/publications.pdf

Version: 2024-02-01

50276 64796 7,352 161 46 79 citations h-index g-index papers 167 167 167 7872 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opinion on Drug Delivery, 2008, 5, 371-383.	5.0	283
2	Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews, 2016, 106, 277-319.	13.7	266
3	Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. European Journal of Pharmaceutical Sciences, 1998, 6, 153-163.	4.0	250
4	Expression of Specific Markers and Particle Transport in a New Human Intestinal M-Cell Model. Biochemical and Biophysical Research Communications, 2000, 279, 808-813.	2.1	246
5	Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Advanced Drug Delivery Reviews, 2016, 106, 223-241.	13.7	241
6	Antibacterial Effects of Poly(2-(dimethylamino ethyl)methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria. Biomacromolecules, 2010, 11, 443-453.	5.4	208
7	Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discovery Today, 2005, 10, 1145-1157.	6.4	202
8	<i>In Vitro</i> Models of the Intestinal Barrier. ATLA Alternatives To Laboratory Animals, 2001, 29, 649-668.	1.0	196
9	Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Advanced Drug Delivery Reviews, 2009, 61, 1427-1449.	13.7	195
10	Drug delivery to inflamed colon by nanoparticles: Comparison of different strategies. International Journal of Pharmaceutics, 2013, 440, 3-12.	5.2	150
11	Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Advanced Drug Delivery Reviews, 2020, 157, 2-36.	13.7	150
12	Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10). Pharmaceutics, 2019, 11, 78.	4.5	141
13	Direct Peptide Bioconjugation/PEGylation at Tyrosine with Linear and Branched Polymeric Diazonium Salts. Journal of the American Chemical Society, 2012, 134, 7406-7413.	13.7	122
14	Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine, 2001, 20, 208-217.	3.8	117
15	Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine, 2001, 19, 1940-1950.	3.8	115
16	Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics, 2019, 11, 41.	4.5	111
17	Phosphine-mediated one-pot thiol–ene "click―approach to polymer–protein conjugates. Chemical Communications, 2009, , 5272.	4.1	110
18	Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPETâ,,¢. Expert Opinion on Drug Delivery, 2006, 3, 685-692.	5.0	108

#	Article	IF	Citations
19	Safety concerns over the use of intestinal permeation enhancers: A mini-review. Tissue Barriers, 2016, 4, e1176822.	3.2	101
20	Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science and Technology, 2016, 53, 90-101.	15.1	93
21	In Vitro and ex Vivo Intestinal Tissue Models to Measure Mucoadhesion of Poly (Methacrylate) and N-Trimethylated Chitosan Polymers. Pharmaceutical Research, 2005, 22, 38-49.	3.5	89
22	Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol)) Tj ETQq0 0 0	rgBT /Ove 9.9	erlock 10 Tf 78
23	Cell culture modeling of specialized tissue: identification of genes expressed specifically by follicle-associated epithelium of Peyer's patch by expression profiling of Caco-2/Raji co-cultures. International Immunology, 2004, 16, 91-99.	4.0	77
24	Labrasol $\hat{A}^{@}$ is an efficacious intestinal permeation enhancer across rat intestine: Ex vivo and in vivo rat studies. Journal of Controlled Release, 2019, 310, 115-126.	9.9	76
25	Oral vaccination in man using antigens in particles: current status. European Journal of Pharmaceutical Sciences, 2001, 14, 183-189.	4.0	75
26	Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discovery Today: Technologies, 2012, 9, e113-e119.	4.0	74
27	Selamectin is a potent substrate and inhibitor of human and canine P-glycoprotein. Journal of Veterinary Pharmacology and Therapeutics, 2005, 28, 257-265.	1.3	73
28	Local delivery of macromolecules to treat diseases associated with the colon. Advanced Drug Delivery Reviews, 2018, 136-137, 2-27.	13.7	72
29	Heparin absorption across the intestine: effects of sodium N-[8-(2-hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharmaceutical Research, 1997, 14, 1772-1779.	3.5	67
30	Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization. Cellular Immunology, 2003, 224, 8-16.	3.0	67
31	A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 830-839.	4.3	66
32	A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nature Protocols, 2017, 12, 1387-1399.	12.0	64
33	Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Current Opinion in Pharmacology, 2017, 36, 22-28.	3.5	64
34	Myosin Light Chain Kinase Inhibition: Correction of Increased Intestinal Epithelial Permeability In Vitro. Pharmaceutical Research, 2008, 25, 1377-1386.	3.5	63
35	Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes and Infection, 2001, 3, 867-876.	1.9	62
36	Oral delivery of macromolecules: rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET < sup > \hat{A}^{\otimes} < /sup >). The rapeutic Delivery, 2011, 2, 1595-1610.	2.2	62

#	Article	IF	Citations
37	An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. Journal of Controlled Release, 2013, 167, 120-129.	9.9	60
38	The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 544-551.	4.3	60
39	Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. Reactive and Functional Polymers, 2006, 66, 51-64.	4.1	59
40	Formulation strategies to improve oral peptide delivery. Pharmaceutical Patent Analyst, 2014, 3, 313-336.	1.1	56
41	High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocyte cultures. Journal of Controlled Release, 2010, 146, 84-92.	9.9	53
42	Oral delivery of peptides: opportunities and issues for translation. Advanced Drug Delivery Reviews, 2016, 106, 193-195.	13.7	50
43	Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. Journal of Controlled Release, 2018, 286, 402-414.	9.9	48
44	Non-antibiotic anti-diarrhoeal drugs: factors affecting oral bioavailability of berberine and loperamide in intestinal tissue. Advanced Drug Delivery Reviews, 1997, 23, 111-120.	13.7	47
45	Cracking the Junction: Update on the Progress of Gastrointestinal Absorption Enhancement in the Delivery of Poorly Absorbed Drugs. Critical Reviews in Therapeutic Drug Carrier Systems, 2008, 25, 117-168.	2.2	47
46	Resistance of Staphylococcus aureus to the cationic antimicrobial agent poly(2-(dimethylamino) Tj ETQq0 0 0 rg Medical Microbiology, 2011, 60, 968-976.	BT /Overlo	ock 10 Tf 50 3 47
47	Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. European Journal of Pharmaceutical Sciences, 2009, 38, 291-300.	4.0	46
48	Evaluation of alkylmaltosides as intestinal permeation enhancers: Comparison between rat intestinal mucosal sheets and Caco-2 monolayers. European Journal of Pharmaceutical Sciences, 2012, 47, 701-712.	4.0	45
49	Increased Intestinal Permeability in Rats Subjected to Traumatic Frontal Lobe Percussion Brain Injury. Journal of Trauma, 2008, 64, 131-138.	2.3	44
50	Dexamethasone–pDMAEMA polymeric conjugates reduce inflammatory biomarkers in human intestinal epithelial monolayers. Journal of Controlled Release, 2009, 135, 35-43.	9.9	44
51	Restoration of rat colonic epithelium after <i>in situ</i> intestinal instillation of the absorption promoter, sodium caprate. Therapeutic Delivery, 2010, 1, 75-82.	2.2	44
52	Apical membrane receptors on intestinal M cells: potential targets for vaccine delivery. Advanced Drug Delivery Reviews, 2004, 56, 721-726.	13.7	43
53	Progress in the delivery of nanoparticle constructs: towards clinical translation. Current Opinion in Pharmacology, 2014, 18, 120-128.	3.5	43
54	Thapsigargin, a new calciumâ€dependent epithelial anion secretagogue. British Journal of Pharmacology, 1989, 98, 809-816.	5.4	42

#	Article	IF	CITATIONS
55	Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunology Letters, 2005, 100, 182-188.	2.5	42
56	Redoxâ∈Mediated Angiogenesis in the Hypoxic Joint of Inflammatory Arthritis. Arthritis and Rheumatology, 2014, 66, 3300-3310.	5.6	41
57	Effects of Lactobacillus salivarius 433118 on Intestinal Inflammation, Immunity Status and InÂvitro Colon Function in Two Mouse Models of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2008, 53, 2495-2506.	2.3	40
58	Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport. Pharmaceutical Research, 2000, 17, 1181-1188.	3.5	39
59	High-content analysis for drug delivery and nanoparticle applications. Drug Discovery Today, 2015, 20, 942-957.	6.4	39
60	Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 276-284.	4.3	39
61	A head-to-head Caco-2 assay comparison of the mechanisms of action of the intestinal permeation enhancers: SNAC and sodium caprate (C10). European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 95-107.	4.3	39
62	Transient Permeation Enhancer \hat{A}^{\otimes} (TPE \hat{A}^{\otimes}) technology for oral delivery of octreotide: a technological evaluation. Expert Opinion on Drug Delivery, 2021, 18, 1501-1512.	5.0	39
63	Formulation strategies to improve the efficacy of intestinal permeation enhancers,. Advanced Drug Delivery Reviews, 2021, 177, 113925.	13.7	39
64	Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers. Veterinary Research Communications, 2008, 32, 93-106.	1.6	38
65	In vitro and in vivo characterisation of a novel peptide delivery system: Amphiphilic polyelectrolyte–salmon calcitonin nanocomplexes. Journal of Controlled Release, 2010, 147, 289-297.	9.9	38
66	Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 194-206.	4.3	38
67	Stability, toxicity and intestinal permeation enhancement of two food-derived antihypertensive tripeptides, lle-Pro-Pro and Leu-Lys-Pro. Peptides, 2015, 71, 1-7.	2.4	37
68	Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opinion on Drug Delivery, 2021, 18, 273-300.	5.0	36
69	Melittin as an Epithelial Permeability Enhancer I: Investigation of Its Mechanism of Action in Caco-2 Monolayers. Pharmaceutical Research, 2007, 24, 1336-1345.	3 . 5	35
70	Nanoparticle passage through porcine jejunal mucus: Microfluidics and rheology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 863-873.	3.3	35
71	Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. International Journal of Pharmaceutics, 2018, 539, 11-22.	5.2	35
72	The mycotoxin patulin increases colonic epithelial permeability in vitro. Food and Chemical Toxicology, 2012, 50, 4097-4102.	3.6	33

#	Article	IF	CITATIONS
73	Novel oral drug delivery gateways for biotechnology products: polypeptides and vaccines. Pharmaceutical Science & Technology Today, 1998, 1, 291-299.	0.7	32
74	Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. European Journal of Pharmaceutical Sciences, 2009, 38, 301-311.	4.0	32
75	Evaluation of Sucrose Laurate as an Intestinal Permeation Enhancer for Macromolecules: Ex Vivo and In Vivo Studies. Pharmaceutics, 2019, 11, 565.	4.5	32
76	Melittin as a Permeability Enhancer II: In Vitro Investigations in Human Mucus Secreting Intestinal Monolayers and Rat Colonic Mucosae. Pharmaceutical Research, 2007, 24, 1346-1356.	3.5	31
77	Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences, 2022, 170, 106098.	4.0	29
78	Oral peptide delivery: prioritizing the leading technologies. Therapeutic Delivery, 2011, 2, 1567-1573.	2.2	28
79	Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative. AAPS Journal, 2014, 16, 1064-1076.	4.4	28
80	Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. International Journal of Pharmaceutics, 2010, 387, 154-160.	5.2	27
81	Site-specific N-terminus conjugation of poly(mPEG1100) methacrylates to salmon calcitonin: synthesis and preliminary biological evaluation. Soft Matter, 2009, 5, 3038.	2.7	26
82	Investigation of coco-glucoside as a novel intestinal permeation enhancer in rat models. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 856-865.	4.3	26
83	Silica-Coated Nanoparticles with a Core of Zinc, <scp>I</scp> -Arginine, and a Peptide Designed for Oral Delivery. ACS Applied Materials & Delivery. ACS	8.0	26
84	Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. European Journal of Pharmaceutical Sciences, 2020, 154, 105509.	4.0	26
85	High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs. Peptides, 2011, 32, 1764-1773.	2.4	25
86	PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights. Journal of Controlled Release, 2011, 149, 126-132.	9.9	25
87	Human eccrine sweat gland epithelial cultures express ductal characteristics Journal of Physiology, 1988, 405, 657-675.	2.9	24
88	A comparison of three Peyer's patch "M-like―cell culture models: particle uptake, bacterial interaction, and epithelial histology. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 426-436.	4.3	24
89	Colonic absorption of salmon calcitonin using tetradecyl maltoside (TDM) as a permeation enhancer. European Journal of Pharmaceutical Sciences, 2013, 48, 726-734.	4.0	23
90	In vitro and in vivo preclinical evaluation of a minisphere emulsion-based formulation (SmPill®) of salmon calcitonin. European Journal of Pharmaceutical Sciences, 2015, 79, 102-111.	4.0	23

#	Article	IF	Citations
91	Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 179-187.	4.3	23
92	Encapsulation in biodegradable microparticles enhances serum antibody response to parenterally-delivered \hat{l}^2 -amyloid in mice. Vaccine, 2001, 19, 4185-4193.	3.8	22
93	Growth and characterisation of a cell culture model of the feline blood–brain barrier. Veterinary Immunology and Immunopathology, 2006, 109, 233-244.	1.2	22
94	In vitro Interactions Between the Oral Absorption Promoter, Sodium Caprate (C10) and S. typhimurium in Rat Intestinal Ileal Mucosae. Pharmaceutical Research, 2008, 25, 114-122.	3.5	22
95	CriticalSorbâ,,¢ Promotes Permeation of Flux Markers Across Isolated Rat Intestinal Mucosae and Caco-2 Monolayers. Pharmaceutical Research, 2012, 29, 2543-2554.	3.5	22
96	Comparison of the effects of the intestinal permeation enhancers, SNAC and sodium caprate (C10): Isolated rat intestinal mucosae and sacs. European Journal of Pharmaceutical Sciences, 2021, 158, 105685.	4.0	22
97	Rat, ovine and bovine Peyer's patches mounted in horizontal diffusion chambers display sampling function. Journal of Controlled Release, 2006, 115, 68-77.	9.9	21
98	Chloride-led Disruption of the Intestinal Mucous Layer Impedes <i>Salmonella</i> Invasion: Evidence for an †Enteric Tear†Mechanism. Cellular Physiology and Biochemistry, 2011, 28, 743-752.	1.6	20
99	Drug Delivery Systems in Domestic Animal Species. Handbook of Experimental Pharmacology, 2010, , 79-112.	1.8	18
100	First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology, 2015, 89, 193-203.	4.1	18
101	An Enteric-Coated Polyelectrolyte Nanocomplex Delivers Insulin in Rat Intestinal Instillations When Combined with a Permeation Enhancer. Pharmaceutics, 2020, 12, 259.	4.5	18
102	Coated minispheres of salmon calcitonin target rat intestinal regions to achieve systemic bioavailability: Comparison between intestinal instillation and oral gavage. Journal of Controlled Release, 2016, 238, 242-252.	9.9	17
103	Labrasol \hat{A}^{\otimes} and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae. Journal of Pharmaceutical Sciences, 2018, 107, 1648-1655.	3.3	17
104	Amphiphilic Star Polypept(o)ides as Nanomeric Vectors in Mucosal Drug Delivery. Biomacromolecules, 2020, 21, 2455-2462.	5.4	17
105	A distinctive electrophysiological signature from the Peyer's patches of rabbit intestine. British Journal of Pharmacology, 1994, 113, 593-599.	5.4	16
106	A Tertiary Amino-Containing Polymethacrylate Polymer Protects Mucus-Covered Intestinal Epithelial Monolayers Against Pathogenic Challenge. Pharmaceutical Research, 2008, 25, 1193-1201.	3.5	16
107	Lymphocyte migration through the blood–brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the preâ€existence of virus and tumour necrosis factor (TNF)â€Î± within the central nervous system (CNS): studies using an ⟨i⟩in vitro⟨ i⟩ feline BBB model. Neuropathology and Applied Neurobiology, 2009, 35, 592-602.	3.2	16
108	Mechanisms of action of zinc on rat intestinal epithelial electrogenic ion secretion: insights into its antidiarrhoeal actions. Journal of Pharmacy and Pharmacology, 2012, 64, 644-653.	2.4	16

#	Article	IF	CITATIONS
109	An Assessment of the Permeation Enhancer, 1-phenyl-piperazine (PPZ), on Paracellular Flux Across Rat Intestinal Mucosae in Ussing Chambers. Pharmaceutical Research, 2016, 33, 2506-2516.	3.5	16
110	Sodium glycodeoxycholate and sodium deoxycholate as epithelial permeation enhancers: in vitro and ex vivo intestinal and buccal bioassays. European Journal of Pharmaceutical Sciences, 2021, 159, 105737.	4.0	16
111	Cultured human sweat gland epithelia: isolation of glands using neutral red. Pharmaceutical Research, 1995, 12, 171-175.	3.5	15
112	Controlled Release Drug Delivery in Farmed Animals: Commercial Challenges and Academic Opportunities. Current Drug Delivery, 2009, 6, 383-390.	1.6	14
113	Zinc sulphate attenuates chloride secretion in Human colonic mucosae in vitro. European Journal of Pharmacology, 2012, 696, 166-171.	3.5	14
114	Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers. Biomacromolecules, 2014, 15, 2889-2895.	5 . 4	14
115	Progress in the formulation and delivery of somatostatin analogs for acromegaly. Therapeutic Delivery, 2017, 8, 867-878.	2.2	14
116	Iontophoresis-enhanced absorptive flux of polar molecules across intestinal tissue in vitro. Pharmaceutical Research, 2000, 17, 476-478.	3. 5	13
117	Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease. Acta Biomaterialia, 2022, 140, 561-572.	8.3	13
118	TNFα-dependent anhedonia and upregulation of hippocampal serotonin transporter activity in a mouse model of collagen-induced arthritis. Neuropharmacology, 2018, 137, 211-220.	4.1	12
119	Intra-articular delivery of a nanocomplex comprising salmon calcitonin, hyaluronic acid, and chitosan using an equine model of joint inflammation. Drug Delivery and Translational Research, 2018, 8, 1421-1435.	5.8	12
120	The Centenary of the Discovery of Insulin: An Update on the Quest for Oral Delivery. Frontiers in Drug Delivery, 2021, 1, .	1.6	12
121	Catching target receptors for drug and vaccine delivery using TOGA® gene expression profiling. Advanced Drug Delivery Reviews, 2002, 54, 1213-1223.	13.7	11
122	Feline immunodeficiency virus infection: A valuable model to study HIV-1 associated encephalitis. Veterinary Immunology and Immunopathology, 2008, 123, 134-137.	1.2	11
123	Translocation of <i>Vibrio parahaemolyticus </i> across an <i> in vitro </i> M cell model. FEMS Microbiology Letters, 2014, 350, 65-71.	1.8	11
124	Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine, 2015, 10, 2289-2305.	3.3	11
125	Investigations of Piperazine Derivatives as Intestinal Permeation Enhancers in Isolated Rat Intestinal Tissue Mucosae. AAPS Journal, 2020, 22, 33.	4.4	10
126	Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomedicine and Pharmacotherapy, 2021, 144, 112275.	5.6	10

#	Article	IF	Citations
127	Poly(Ethylene Glycol)-Based Backbones with High Peptide Loading Capacities. Molecules, 2014, 19, 17559-17577.	3.8	9
128	Oral absorption enhancement: taking the next steps in therapeutic delivery. Therapeutic Delivery, 2010, 1, 5-9.	2.2	8
129	Track analysis of the passage of rhodamine-labeled liposomes across porcine jejunal mucus in a microchannel device. Therapeutic Delivery, 2018, 9, 419-433.	2.2	8
130	Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opinion on Drug Discovery, 2021, 16, 235-254.	5.0	8
131	Stomaching Drug Delivery. New England Journal of Medicine, 2019, 380, 1671-1673.	27.0	7
132	Evolving peptides for oral intake. Nature Biomedical Engineering, 2020, 4, 487-488.	22.5	7
133	Permeability-enhancing effects of three laurate-disaccharide monoesters across isolated rat intestinal mucosae. International Journal of Pharmaceutics, 2021, 601, 120593.	5.2	7
134	Oral Delivery of Pathogens from the Intestine to the Nervous System. Journal of Drug Targeting, 2004, 12, 71-78.	4.4	6
135	Opportunities for drug-delivery research in nutraceuticals and functional foods?. Therapeutic Delivery, 2013, 4, 301-305.	2.2	6
136	Development of a Non-Aqueous Dispersion to Improve Intestinal Epithelial Flux of Poorly Permeable Macromolecules. AAPS Journal, 2017, 19, 244-253.	4.4	6
137	The effect of plant sterol-enriched turkey meat on cholesterol bio-accessibility during <i>in vitro</i> digestion and Caco-2 cell uptake. International Journal of Food Sciences and Nutrition, 2018, 69, 176-182.	2.8	6
138	Add Sugar to Chitosan: Mucoadhesion and In Vitro Intestinal Permeability of Mannosylated Chitosan Nanocarriers. Pharmaceutics, 2022, 14, 830.	4.5	6
139	Passive transepithelial diltiazem absorption across intestinal tissue leading to tight junction openings. Journal of Controlled Release, 1996, 38, 193-203.	9.9	5
140	Synthesis and In Vivo Evaluation of Insulin-Loaded Whey Beads as an Oral Peptide Delivery System. Pharmaceutics, 2021, 13, 656.	4.5	4
141	Chapter 2.1. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. RSC Drug Discovery Series, 2012, , 39-62.	0.3	4
142	A novel in vitro electrophysiological bioassay for transport of loperamide across intestinal epithelia. Pharmaceutical Research, 1997, 14, 942-945.	3.5	3
143	Introduction for the special issue on recent advances in drug delivery across tissue barriers. Tissue Barriers, 2016, 4, e1187981.	3.2	3
144	Effect of Overencapsulation on the Disintegration and Dissolution of Licensed Formulations for Blinding in Randomized Controlled Trials. Journal of Pharmaceutical Sciences, 2019, 108, 1227-1235.	3.3	3

#	Article	IF	CITATIONS
145	NANOSTRUCTURES OVERCOMING THE INTESTINAL BARRIER: DRUG DELIVERY STRATEGIES. RSC Drug Discovery Series, 2012, , 63-90.	0.3	3
146	Protein kinase D, ubiquitin and proteasome pathways are involved in adenosine receptor-stimulated NR4A expression in myeloid cells. Biochemical and Biophysical Research Communications, 2021, 555, 19-25.	2.1	2
147	A Critical Overview of the Biological Effects of Excipients (Part II): Scientific Considerations and Tools for Oral Product Development. AAPS Journal, 2022, 24, 61.	4.4	2
148	Section of biological sciences. Irish Journal of Medical Science, 1986, 155, 125-140.	1.5	1
149	Per Artursson's Major Contributions to the Caco-2ÂCell Literature in Pharmaceutical Sciences. Journal of Pharmaceutical Sciences, 2021, 110, 12-16.	3.3	1
150	Entrapment of Hydrophilic and Hydrophobic Molecules in Beads Prepared from Isolated Denatured Whey Protein. Pharmaceutics, 2021, 13, 1001.	4.5	1
151	Royal academy of medicine in ireland section of biomedical sciences. Irish Journal of Medical Science, 1996, 165, 224-238.	1.5	0
152	Fast-track approaches to selecting discovery candidates for full development. Drug Discovery Today, 1998, 3, 6-7.	6.4	0
153	In vitro inhibition of cytochalasin induced tight junction opening in human colon. Gastroenterology, 2003, 124, A316.	1.3	0
154	New technologiesPharmacology applied: delivering the goods. Current Opinion in Pharmacology, 2006, 6, 491-493.	3.5	0
155	Prediction of therapeutic and drug delivery outcomes using animal models∆. Advanced Drug Delivery Reviews, 2007, 59, 1071-1072.	13.7	0
156	Human: Veterinary Technology Cross Over. Advances in Delivery Science and Technology, 2013, , 359-375.	0.4	0
157	Hepatic gateways. Expert Review of Gastroenterology and Hepatology, 2016, 10, 561-563.	3.0	0
158	Editorial overview: New technologies: drug delivery and medical devices combinations, more than the sum of the parts. Current Opinion in Pharmacology, 2017, 36, iv-vii.	3.5	0
159	AB069. NR4A1 agonist CsnB may affect macrophage cells primarily within colorectal tumours in order to reduce pro-inflammatory response. Mesentery and Peritoneum, 0, 4, AB069-AB069.	0.1	0
160	AB073. Attenuation of pathogenic pro-inflammatory signals in colorectal cancer via an NR4A1 agonist cytosporone B. Mesentery and Peritoneum, 0, 4, AB073-AB073.	0.1	0
161	Drug Delivery Formulations and Devices Tailored for Paediatric and Older Patients. Frontiers in Drug Delivery, 2021, 1, .	1.6	0