Aleksandar Bijelic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6597497/publications.pdf

Version: 2024-02-01

430754 642610 1,707 25 18 23 citations g-index h-index papers 26 26 26 1455 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyoxometalates as Potential Nextâ€Generation Metallodrugs in the Combat Against Cancer. Angewandte Chemie - International Edition, 2019, 58, 2980-2999.	7.2	403
2	The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chemical Communications, 2018, 54, 1153-1169.	2.2	294
3	The use of polyoxometalates in protein crystallography – An attempt to widen a well-known bottleneck. Coordination Chemistry Reviews, 2015, 299, 22-38.	9.5	210
4	The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of "Substrateâ€Guiding Residues―for Enzymatic Specificity. Angewandte Chemie - International Edition, 2015, 54, 14677-14680.	7.2	96
5	Ten Good Reasons for the Use of the Tellurium-Centered Anderson–Evans Polyoxotungstate in Protein Crystallography. Accounts of Chemical Research, 2017, 50, 1441-1448.	7.6	93
6	Heterologous expression and characterization of functional mushroom tyrosinase (AbPPO4). Scientific Reports, 2017, 7, 1810.	1.6	85
7	Hen Eggâ€White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)â€Centred Polyoxotungstate. ChemBioChem, 2015, 16, 233-241.	1.3	72
8	In situ formation of the first proteinogenically functionalized [TeW ₆ O ₂₄ O ₂ (Glu)] ^{7â^'} structure reveals unprecedented chemical and geometrical features of the Anderson-type cluster. Chemical Communications, 2016, 52, 12286-12289.	2.2	52
9	Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for monoversus diphenolase activity in plant polyphenol oxidases. Scientific Reports, 2017, 7, 8860.	1.6	51
10	Im Kampf gegen Krebs: Polyoxometallate als nÃehste Generation metallhaltiger Medikamente. Angewandte Chemie, 2019, 131, 3008-3029.	1.6	48
11	Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Scientific Reports, 2019, 9, 4022.	1.6	40
12	Polyoxometalates: more than a phasing tool in protein crystallography. ChemTexts, 2018, 4, 10.	1.0	36
13	The P-type ATPase inhibiting potential of polyoxotungstates. Metallomics, 2018, 10, 287-295.	1.0	34
14	The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization. IUCrJ, 2017, 4, 734-740.	1.0	30
15	A Peptideâ€Induced Selfâ€Cleavage Reaction Initiates the Activation of Tyrosinase. Angewandte Chemie - International Edition, 2019, 58, 7475-7479.	7.2	29
16	Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Scientific Reports, 2020, 10, 1659.	1.6	22
17	Crystallization and preliminary X-ray crystallographic analysis of polyphenol oxidase from <i>Juglans regia</i> (i>jrPPO1). Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 832-834.	0.4	18
18	The crystallization additive hexatungstotellurate promotes the crystallization of the HSP70 nucleotide binding domain into two different crystal forms. PLoS ONE, 2018, 13, e0199639.	1.1	18

#	Article	IF	Citations
19	Binding of a Fatty Acid-Functionalized Anderson-Type Polyoxometalate to Human Serum Albumin. Inorganic Chemistry, 2020, 59, 5243-5246.	1.9	18
20	<i>In crystallo</i> activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 491-499.	0.4	13
21	Transition metal-substituted Keggin polyoxotungstates enabling covalent attachment to proteinase K upon co-crystallization. Chemical Communications, 2019, 55, 11519-11522.	2.2	12
22	Eine peptidvermittelte Selbstspaltungsreaktion initiiert die Tyrosinaseaktivierung. Angewandte Chemie, 2019, 131, 7553-7557.	1.6	4
23	A Peptide-Induced Self-Cleavage Reaction Initiates the Activation of Tyrosinase., 2019, 58, 7475.		2
24	Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. , 2019, 58, 2980.		1
25	Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. , 2019, 58, 2980.		1