List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6597387/publications.pdf Version: 2024-02-01

YUANRO LUL

#	Article	IF	CITATIONS
1	Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sensing of Environment, 2006, 105, 115-128.	4.6	186
2	Recent declines in China's largest freshwater lake: trend or regime shift?. Environmental Research Letters, 2013, 8, 014010.	2.2	158
3	Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis. Remote Sensing of Environment, 2019, 220, 1-18.	4.6	93
4	Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sensing, 2015, 7, 488-511.	1.8	86
5	Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Science Reviews, 2021, 212, 103451.	4.0	81
6	Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. Journal of Hydrology, 2015, 531, 1129-1140.	2.3	65
7	Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake. Journal of Hydrology, 2015, 523, 14-23.	2.3	60
8	A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121, 177-191.	4.9	57
9	Changing landscapes by damming: the Three Gorges Dam causes downstream lake shrinkage and severe droughts. Landscape Ecology, 2016, 31, 1883-1890.	1.9	51
10	Satellite-based detection of water surface variation in China's largest freshwater lake in response to hydro-climatic drought. International Journal of Remote Sensing, 2014, 35, 4544-4558.	1.3	43
11	Hydroclimatological influences on recently increased droughts in China's largest freshwater lake. Hydrology and Earth System Sciences, 2016, 20, 93-107.	1.9	41
12	Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water (Switzerland), 2016, 8, 281.	1.2	40
13	An Approach to Tracking Meteorological Drought Migration. Water Resources Research, 2019, 55, 3266-3284.	1.7	40
14	A physical explanation of the variation in threshold for delineating terrestrial water surfaces from multi-temporal images: effects of radiometric correction. International Journal of Remote Sensing, 2012, 33, 5862-5875.	1.3	38
15	How representative are instantaneous evaporative fraction measurements of daytime fluxes?. Hydrology and Earth System Sciences, 2013, 17, 3913-3919.	1.9	32
16	A nonparametric approach to estimating terrestrial evaporation: Validation in eddy covariance sites. Agricultural and Forest Meteorology, 2012, 157, 49-59.	1.9	31
17	Reducing the Discrepancy Between ASTER and MODIS Land Surface Temperature Products. Sensors, 2007, 7, 3043-3057.	2.1	30
18	Variability of Surface Heat Fluxes and Its Driving Forces at Different Time Scales Over a Large Ephemeral Lake in China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4939-4957.	1.2	30

#	Article	IF	CITATIONS
19	Comparative Assessment of Satellite-Retrieved Surface Net Radiation: An Examination on CERES and SRB Datasets in China. Remote Sensing, 2015, 7, 4899-4918.	1.8	29
20	Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives. Science China Earth Sciences, 2022, 65, 197-214.	2.3	29
21	Phase transition of surface energy exchange in China's largest freshwater lake. Agricultural and Forest Meteorology, 2017, 244-245, 98-110.	1.9	28
22	Two energy balance closure approaches: applications and comparisons over an oasis-desert ecotone. Journal of Arid Land, 2017, 9, 51-64.	0.9	28
23	Spatioâ€ŧemporal pattern of meteorological droughts and its possible linkage with climate variability. International Journal of Climatology, 2018, 38, 2082-2096.	1.5	28
24	Assessing water storage changes of Lake Poyang from multi-mission satellite data and hydrological models. Journal of Hydrology, 2020, 590, 125229.	2.3	27
25	Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on China's Largest Freshwater Lake. Remote Sensing, 2017, 9, 1069.	1.8	26
26	SPI Based Meteorological Drought Assessment over a Humid Basin: Effects of Processing Schemes. Water (Switzerland), 2016, 8, 373.	1.2	25
27	Propagation of soil moisture droughts in a hotspot region: Spatial pattern and temporal trajectory. Journal of Hydrology, 2021, 593, 125906.	2.3	25
28	Trajectory based detection of forest-change impacts on surface soil moisture at a basin scale [Poyang Lake Basin, China]. Journal of Hydrology, 2014, 514, 337-346.	2.3	24
29	Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product over Poyang Lake Basin, China. Procedia Environmental Sciences, 2011, 10, 2265-2271.	1.3	23
30	Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study. Remote Sensing, 2016, 8, 560.	1.8	23
31	Contrast Effects of Vegetation Cover Change on Evapotranspiration during a Revegetation Period in the Poyang Lake Basin, China. Forests, 2018, 9, 217.	0.9	23
32	A Generalized Model for Intersensor NDVI Calibration and Its Comparison With Regression Approaches. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1842-1852.	2.7	22
33	MODIS detection of vegetation changes and investigation of causal factors in Poyang Lake basin, China for 2001–2015. Ecological Indicators, 2018, 91, 511-522.	2.6	22
34	SMAP underestimates soil moisture in vegetation-disturbed areas primarily as a result of biased surface temperature data. Remote Sensing of Environment, 2020, 247, 111914.	4.6	22
35	Multisensor Normalized Difference Vegetation Index Intercalibration: A Comprehensive Overview of the Causes of and Solutions for Multisensor Differences. IEEE Geoscience and Remote Sensing Magazine, 2018, 6, 23-45.	4.9	21
36	A comparison of NDVI intercalibration methods. International Journal of Remote Sensing, 2017, 38, 5273-5290.	1.3	19

ΥUANBO LIU

#	Article	IF	CITATIONS
37	Combining Multispectral Imagery with in situ Topographic Data Reveals Complex Water Level Variation in China's Largest Freshwater Lake. Remote Sensing, 2015, 7, 13466-13484.	1.8	18
38	Downscaling Surface Water Inundation from Coarse Data to Fine-Scale Resolution: Methodology and Accuracy Assessment. Remote Sensing, 2015, 7, 15989-16003.	1.8	18
39	A Comparison Study of Precipitation in the Poyang and the Dongting Lake Basins from 1960–2015. Scientific Reports, 2020, 10, 3381.	1.6	16
40	A Comparison of Flux Variance and Surface Renewal Methods With Eddy Covariance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 345-350.	2.3	15
41	Quantifying the Relationship Between Intersensor Images in Solar Reflective Bands: Implications for Intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7727-7737.	2.7	15
42	Seasonal Water Exchanges between China's Poyang Lake and Its Saucer-Shaped Depressions on River Deltas. Water (Switzerland), 2017, 9, 884.	1.2	15
43	Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects. Sensors, 2009, 9, 1054-1066.	2.1	14
44	Compositing the Minimum NDVI for Daily Water Surface Mapping. Remote Sensing, 2020, 12, 700.	1.8	14
45	Inferring transpiration from evapotranspiration: A transpiration indicator using the Priestley-Taylor coefficient of wet environment. Ecological Indicators, 2020, 110, 105853.	2.6	13
46	Identifying spatial extent of meteorological droughts: An examination over a humid region. Journal of Hydrology, 2020, 591, 125505.	2.3	13
47	Heat Storage Effect on Evaporation Estimates of China's Largest Freshwater Lake. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032334.	1.2	13
48	Hysteresis Behavior of Surface Water Fluxes in a Hydrologic Transition of an Ephemeral Lake. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032364.	1.2	13
49	Relative Contribution of the Topographic Influence on the Triangle Approach for Evapotranspiration Estimation over Mountainous Areas. Advances in Meteorology, 2014, 2014, 1-16.	0.6	12
50	Estimation of Evapotranspiration Using a Nonparametric Approach Under All Sky: Accuracy Evaluation and Error Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2528-2539.	2.3	11
51	ESA CCI Soil Moisture Assimilation in SWAT for Improved Hydrological Simulation in Upper Huai River Basin. Advances in Meteorology, 2018, 2018, 1-13.	0.6	11
52	Recent declines in global water vapor from MODIS products: Artifact or real trend?. Remote Sensing of Environment, 2020, 247, 111896.	4.6	11
53	Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation. Remote Sensing, 2015, 7, 5398-5415.	1.8	10
54	Seasonal and Diurnal Variations in the Priestley–Taylor Coefficient for a Large Ephemeral Lake. Water (Switzerland), 2020, 12, 849.	1.2	10

#	Article	IF	CITATIONS
55	Soil moisture droughts in East Africa: Spatiotemporal patterns and climate drivers. Journal of Hydrology: Regional Studies, 2022, 40, 101013.	1.0	10
56	Detectability of dayâ€ŧoâ€day variability in the evaporative flux ratio: A field examination in the Loess Plateau of China. Water Resources Research, 2007, 43, .	1.7	9
57	Lake Fluctuation Effectively Regulates Wetland Evapotranspiration: A Case Study of the Largest Freshwater Lake in China. Water (Switzerland), 2014, 6, 2482-2500.	1.2	9
58	Precipitation downscaling using a probability-matching approach and geostationary infrared data: an evaluation over six climate regions. Hydrology and Earth System Sciences, 2018, 22, 3685-3699.	1.9	9
59	Meteorological Drought Migration in the Poyang Lake Basin, China: Switching among Different Climate Modes. Journal of Hydrometeorology, 2020, 21, 415-431.	0.7	9
60	Evaluation of satellite-retrieved evapotranspiration based on a nonparametric approach over an arid region. International Journal of Remote Sensing, 2020, 41, 7605-7623.	1.3	8
61	Estimating the Gross Primary Production and Evapotranspiration of Rice Paddy Fields in the Sub-Tropical Region of China Using a Remotely-Sensed Based Water-Carbon Coupled Model. Remote Sensing, 2021, 13, 3470.	1.8	8
62	Temperature contributes more than precipitation to the greening of the Tibetan Plateau during 1982–2019. Theoretical and Applied Climatology, 2022, 147, 1471-1488.	1.3	8
63	Radiative and Aerodynamic Contribution to Evaporation: Eddy ovariance Comparison Between a Plain and a Plateau Lake. Earth and Space Science, 2021, 8, e2021EA001913.	1.1	6
64	Quantifying variability of satellite data in the reflective band for long-term monitoring of the Earth's surface: inference from a multi-temporal relationship between remotely sensed pixels. International Journal of Remote Sensing, 2011, 32, 7717-7730.	1.3	4
65	Using a MODIS Index to Quantify MODIS-AVHRRs Spectral Differences in the Visible Band. Remote Sensing, 2018, 10, 61.	1.8	4
66	Testing the Symmetric Assumption of Complementary Relationship: A Comparison between the Linear and Nonlinear Advection-Aridity Models in a Large Ephemeral Lake. Water (Switzerland), 2019, 11, 1574.	1.2	4
67	Assessing the performance of the Tiangong-2 wide-swath imaging altimeter observations for water level monitoring over complex and shallow lakes. Journal of Hydrology, 2022, 612, 128164.	2.3	4
68	Evapotranspiration Partitioning and Response to Abnormally Low Water Levels in a Floodplain Wetland in China. Advances in Meteorology, 2016, 2016, 1-11.	0.6	3
69	Intercalibrating the MODIS and AVHRR Visible Bands Over Homogeneous Land Surfaces. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 83-87.	1.4	3
70	Satellite-Based Surface Water Storage Estimation: Its history, current status, and future prospects. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 10-31.	4.9	3
71	Soil Salinity Dynamics Impairs Radiometer-Based Soil Moisture Retrieval Over Global Cropland. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	2.7	3
72	Investigating multiple causes of time-varying SMAP soil moisture biases based on core validation sites data. Journal of Hydrology, 2022, 612, 128151.	2.3	3

#	Article	IF	CITATIONS
73	Investigation of a non-linear complementary relationship model for monthly evapotranspiration estimation at global flux sites. Journal of Hydrometeorology, 2021, , .	0.7	2
74	Intra-Annual Variability of Evapotranspiration in Response to Climate and Vegetation Change across the Poyang Lake Basin, China. Remote Sensing, 2022, 14, 885.	1.8	2
75	Temporal Influences on Thresholding for Satellite Retrieval of Water Surface Areas: A Case in the Poyang Lake, China. , 2010, , .		1
76	A direct algorithm for estimating daily regional Evapotranspiration from modis TOA radiances. , 2012, ,		1
77	Exploiting TERRA-AQUA MODIS Relationship in the Reflective Solar Bands for Aerosol Retrieval. Remote Sensing, 2016, 8, 996.	1.8	1
78	Mapping lake topography using high-resolution ALOS PRISM data. , 2012, , .		0
79	Heat Balance and Soil Water Content for Bare Soil Surfaces in the Loess Plateau, China. J Agricultural Meteorology, 2005, 60, 1013-1016.	0.8	0
80	QUANTIFYING THE CONTRIBUTIONS OF ENVIRONMENTAL PARAMETERS TO CERES SURFACE NET RADIATION ERROR IN CHINA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1339-1345.	0.2	0
81	A View from Space on Poyang Lake: What We Can Already See and What It Means. , 2020, , 79-97.		0