Yingli An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6596201/publications.pdf

Version: 2024-02-01

	230014	242451
2,544	27	47
citations	h-index	g-index
77	77	2720
//	//	3738
docs citations	times ranked	citing authors
	2,544 citations 77 locs citations	2,544 27 citations h-index 77 77

#	Article	IF	CITATIONS
1	A Guanosineâ€Quadruplex Hydrogel as Cascade Reaction Container Consuming Endogenous Glucose for Infected Wound Treatmentâ€"A Study in Diabetic Mice. Advanced Science, 2022, 9, e2103485.	5.6	45
2	In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioactive Materials, 2022, 14, 321-334.	8.6	13
3	A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angewandte Chemie, 2021, 133, 10960-10965.	1.6	3
4	A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins. Angewandte Chemie - International Edition, 2021, 60, 10865-10870.	7.2	14
5	Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—An intravital imaging study in mice. Science Advances, 2020, 6, eabb1112.	4.7	73
6	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942.	7.8	59
7	Antifungalâ€Inbuilt Metal–Organicâ€Frameworks Eradicate <i>Candida albicans</i> Biofilms. Advanced Functional Materials, 2020, 30, 2000537.	7.8	44
8	Glucose and H ₂ O ₂ Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS Applied Bio Materials, 2020, 3, 1598-1606.	2.3	37
9	Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromolecular Bioscience, 2019, 19, e1900289.	2.1	29
10	NanoRNP Overcomes Tumor Heterogeneity in Cancer Treatment. Nano Letters, 2019, 19, 7662-7672.	4.5	45
11	A novel strategy based on a ligand-switchable nanoparticle delivery system for deep tumor penetration. Nanoscale Horizons, 2019, 4, 658-666.	4.1	29
12	Phosphorylcholine-Based Polymer Encapsulated Chitosan Nanoparticles Enhance the Penetration of Antimicrobials in a Staphylococcal Biofilm. ACS Macro Letters, 2019, 8, 651-657.	2.3	46
13	Nanocarriers responsive to a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Biomaterials Science, 2019, 7, 2986-2995.	2.6	29
14	Glucose-responsive complex micelles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activity in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 180, 376-383.	2.5	21
15	Rational design of drug delivery systems for potential programmable drug release and improved therapeutic effect. Materials Chemistry Frontiers, 2019, 3, 1159-1167.	3.2	14
16	Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Science China Chemistry, 2019, 62, 637-648.	4.2	24
17	A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis. Colloids and Surfaces B: Biointerfaces, 2019, 174, 352-359.	2.5	15
18	Polymerization-induced self-assembly of large-scale iohexol nanoparticles as contrast agents for X-ray computed tomography imaging. Polymer Chemistry, 2018, 9, 2926-2935.	1.9	22

#	Article	IF	CITATIONS
19	Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5296-5304.	4.0	39
20	Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies. Biomacromolecules, 2018, 19, 2023-2033.	2.6	25
21	Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomaterialia, 2018, 65, 339-348.	4.1	131
22	Nitrilotriacetic Acid (NTA) and Phenylboronic Acid (PBA) Functionalized Nanogels for Efficient Encapsulation and Controlled Release of Insulin. ACS Biomaterials Science and Engineering, 2018, 4, 2007-2017.	2.6	28
23	Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 4895-4911.	3.3	19
24	Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomaterialia, 2018, 79, 331-343.	4.1	82
25	Spatial Confined Synergistic Enzymes with Enhanced Uricolytic Performance and Reduced Toxicity for Effective Gout Treatment. Small, 2018, 14, e1801865.	5.2	24
26	Hemin-micelles immobilized in alginate hydrogels as artificial enzymes with peroxidase-like activity and substrate selectivity. Biomaterials Science, 2017, 5, 570-577.	2.6	24
27	Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Advances, 2017, 7, 10100-10107.	1.7	27
28	Iminoboronate-based dual-responsive micelles via subcomponent self-assembly for hydrophilic 1,2-diol-containing drug delivery. RSC Advances, 2017, 7, 21328-21335.	1.7	22
29	Synthetic Nanochaperones Facilitate Refolding of Denatured Proteins. ACS Nano, 2017, 11, 10549-10557.	7.3	46
30	Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics, 2016, 6, 1277-1292.	4.6	85
31	Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3669-3678.	4.0	24
32	Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones. Langmuir, 2016, 32, 2737-2749.	1.6	20
33	A facile strategy to fabricate glucose-responsive vesicles <i>via</i> a template of thermo-sensitive micelles. Polymer Chemistry, 2015, 6, 3837-3846.	1.9	36
34	Synthesis and research on pH and redox dual responsive UV-cross-linked micelle. Journal of Controlled Release, 2015, 213, e131-e132.	4.8	1
35	Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions. ACS Applied Materials & Interfaces, 2015, 7, 16694-16705.	4.0	52
36	Thermosensitive mixed shell polymeric micelles decorated with gold nanoparticles at the outmost surface: tunable surface plasmon resonance and enhanced catalytic properties with excellent colloidal stability. RSC Advances, 2015, 5, 47458-47465.	1.7	21

#	Article	IF	CITATIONS
37	Complex micelles with the bioactive function of reversible oxygen transfer. Nano Research, 2015, 8, 491-501.	5.8	11
38	Artificial Chaperones Based on Mixed Shell Polymeric Micelles: Insight into the Mechanism of the Interaction of the Chaperone with Substrate Proteins Using Förster Resonance Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10238-10249.	4.0	20
39	Glucose-Responsive Polymer Vesicles Templated by α-CD/PEG Inclusion Complex. Biomacromolecules, 2015, 16, 1372-1381.	2.6	59
40	Spectroscopic studies on the photostability and photoactivity of metallo-tetraphenylporphyrin in micelles. Colloid and Polymer Science, 2014, 292, 1329-1337.	1.0	15
41	Improved thermal stability of lipase in W/O microemulsion by temperature-sensitive polymers. Colloids and Surfaces B: Biointerfaces, 2013, 111, 587-593.	2.5	13
42	A strategy to stabilize the confined chiral TPPS J-aggregate by ionic block copolymer. Colloid and Polymer Science, 2013, 291, 2975-2984.	1.0	6
43	MgTPPS/block copolymers complexes for enhanced stability and photoactivity. RSC Advances, 2013, 3, 18351.	1.7	15
44	Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter, 2013, 9, 8589.	1.2	64
45	A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter, 2013, 9, 1636-1644.	1.2	87
46	Intensity-tunable micelles and films containing bimetal ionsâ€"europium(III) and terbium(III). Colloid and Polymer Science, 2011, 289, 1429-1435.	1.0	7
47	Micellization of copolymers via noncovalent interaction with TPPS and aggregation of TPPS. Science China Chemistry, 2011, 54, 343-350.	4.2	7
48	Micellization and luminescence of PEG-b-P4VP/Europium(III)/1,10-phenanthroline complex. Colloid and Polymer Science, 2010, 288, 1041-1046.	1.0	8
49	Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry, 2010, 53, 514-518.	4.2	28
50	Catalytic properties of gold nanoparticles immobilized on the surfaces of nanocarriers. Journal of Nanoparticle Research, 2010, 12, 1877-1887.	0.8	13
51	Optic and catalytic properties of gold nanoparticles tuned by homopolymers. Science in China Series B: Chemistry, 2009, 52, 1372-1381.	0.8	11
52	Synthesis of hollow crosslinked miktoarm polymer using miniemulsion as templates. Journal of Polymer Science Part A, 2009, 47, 1651-1660.	2.5	9
53	Chiral Polymeric Micelles From Electrostatic Assembly Between Achiral Porphyrins and Block Copolymers. Macromolecular Rapid Communications, 2008, 29, 214-218.	2.0	20
54	Contractive Polymeric Complex Micelles as Thermoâ€Sensitive Nanopumps. Macromolecular Rapid Communications, 2008, 29, 1410-1414.	2.0	24

#	Article	IF	Citations
55	Nanometerâ€Scaled Hollow Spherical Micelles with Hydrophilic Channels and the Controlled Release of Ibuprofen. Macromolecular Rapid Communications, 2008, 29, 1895-1901.	2.0	14
56	Aggregation of biotinylated polymeric microspheres induced by interaction with avidin. Pure and Applied Chemistry, 2007, 79, 1575-1582.	0.9	3
57	Composite Worm-Like Aggregates Formed from a Pair of Block-Copolymers Containing Hydrogen-Bonding Donor and Acceptor. Macromolecular Rapid Communications, 2007, 28, 194-199.	2.0	29
58	Surface Phase Separation and Morphology of Stimuli Responsive Complex Micelles. Macromolecular Rapid Communications, 2007, 28, 1062-1069.	2.0	48
59	Novel Structured Composites Formed from Gold Nanoparticles and Diblock Copolymers. Macromolecular Rapid Communications, 2007, 28, 1350-1355.	2.0	16
60	Thermoresponsive hydrogel of poly(glycidyl methacrylate-co-N-isopropylacrylamide) as a nanoreactor of gold nanoparticles. Journal of Polymer Science Part A, 2007, 45, 2812-2819.	2.5	80
61	Adjustable temperature sensor with double thermoresponsiveness based on the aggregation property of binary diblock copolymers. Journal of Applied Polymer Science, 2006, 102, 3144-3148.	1.3	11
62	Expulsion of Unimers from Polystyrene-block-poly(acrylic acid) Micelles. Macromolecular Chemistry and Physics, 2006, 207, 521-527.	1.1	11
63	Core-Shell-Corona Micellar Complexes between Poly(ethylene glycol)-block-poly(4-vinyl pyridine) and Polystyrene-block-poly(acrylic acid). Macromolecular Chemistry and Physics, 2005, 206, 2354-2361.	1.1	33
64	Formation of Core-Shell-Corona Micellar Complexes through Adsorption of Double Hydrophilic Diblock Copolymers into Core-Shell Micelles. Macromolecular Rapid Communications, 2005, 26, 1341-1345.	2.0	38
65	Formation of hybrid micelles between poly(ethylene glycol)-block-poly(4-vinylpyridinium) cations and sulfate anions in an aqueous milieu. Soft Matter, 2005, 1, 455.	1.2	21
66	Polymerization of Spherical Poly(styrene-b-4-vinylpyridine) Vesicles to Giant Tubes. Macromolecules, 2005, 38, 4548-4550.	2.2	20
67	Preparation and Size Determination of a Soluble Cross-Linked Macromolecule of Polyurethane with an Ethylene Diamine Chain Extender. Macromolecules, 2005, 38, 69-76.	2.2	11
68	Thermoresponsive Micellization of Poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in Water. Macromolecules, 2005, 38, 5743-5747.	2.2	212
69	Comicellization of Poly(ethylene glycol)-block-poly(acrylic acid) and Poly(4-vinylpyridine) in Ethanol. Macromolecules, 2005, 38, 899-903.	2.2	46
70	Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20). Macromolecular Chemistry and Physics, 2004, 205, 2017-2025.	1.1	24
71	Ice template-assisted assembly of spherical PS-b-PAA micelles into novel layer-by-layer hollow spheres. Physical Chemistry Chemical Physics, 2004, 6, 5087.	1.3	0
72	Initial copolymer concentration influence on self-assembly of PS38-b-P(AA190-co-MA20) in water. Physical Chemistry Chemical Physics, 2004, 6, 109.	1.3	25

#	Article	IF	CITATIONS
73	Formation of flower-like aggregates from assembly of single polystyrene-b-poly(acrylic acid) micelles. New Journal of Chemistry, 2004, 28, 1038.	1.4	14
74	Biodegradable polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as anticancer drug carriers. Journal of Applied Polymer Science, 2001, 80, 1976-1982.	1.3	88