Marcin Sloma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6595854/publications.pdf Version: 2024-02-01

MARCIN SLOMA

#	Article	IF	CITATIONS
1	Accelerated Testing and Reliability of FDM-Based Structural Electronics. Applied Sciences (Switzerland), 2022, 12, 1110.	2.5	4
2	Carbon Nanotube-Based Composite Filaments for 3D Printing of Structural and Conductive Elements. Applied Sciences (Switzerland), 2021, 11, 1272.	2.5	28
3	Additive Manufacturing of Electronics from Silver Nanopowders Sintered on 3D Printed Lowâ€Temperature Substrates Advanced Engineering Materials, 2021, 23, 2001085.	3.5	10
4	Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline. Materials, 2021, 14, 4122.	2.9	9
5	Are We Able to Print Components as Strong as Injection Molded?—Comparing the Properties of 3D Printed and Injection Molded Components Made from ABS Thermoplastic. Applied Sciences (Switzerland), 2021, 11, 6946.	2.5	10
6	Highly conductive electronics circuits from aerosol jet printed silver inks. Scientific Reports, 2021, 11, 18141.	3.3	26
7	Photonic curing of silver paths on 3D printed polymer substrate. Circuit World, 2019, 45, 9-14.	0.9	2
8	Electrical and rheological percolation threshold of graphene pastes for screen-printing. Circuit World, 2019, 45, 26-30.	0.9	3
9	Conductive Paths and Connections on Polymer Substrates for Structural Electronics. Periodica Polytechnica Electrical Engineering and Computer Science, 2019, 63, 94-98.	1.0	0
10	Heterophase materials for fused filament fabrication of structural electronics. Journal of Materials Science: Materials in Electronics, 2019, 30, 1236-1245.	2.2	21
11	Characterization of PMMA/BaTiO ₃ Composite Layers Through Printed Capacitor Structures for Microwave Frequency Applications. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1736-1743.	4.6	4
12	Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity. Nanomaterials, 2018, 8, 602.	4.1	41
13	Electrically conductive acrylonitrile butadiene styrene(ABS)/copper composite filament for fused deposition modeling. , 2018, , .		3
14	Rapid prototyping in printed electronics. , 2018, , .		0
15	Aerosol jet printing head for printed microscale electronics. , 2018, , .		0
16	Microwave Characterization of Printed Inductors With Ferrimagnetic BaFe ₁₂ O ₁₉ Composite Layers. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	4
17	Noise Properties of Graphene-Polymer Thick-Film Resistors. Metrology and Measurement Systems, 2017, 24, 585-590.	1.4	1
18	Sprayâ€deposited carbonâ€nanotube counterâ€electrodes for dyeâ€sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1157-1164.	1.8	10

MARCIN SLOMA

#	Article	IF	CITATIONS
19	Graphene-Based Dipole Antenna for a UHF RFID Tag. IEEE Transactions on Antennas and Propagation, 2016, 64, 2862-2868.	5.1	43
20	Aqueous biological graphene based formulations for ink-jet printing. Polish Journal of Chemical Technology, 2016, 18, 46-52.	0.5	1
21	Electric Properties of Graphene-Based Conductive Layers from DC Up To Terahertz Range. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 480-490.	3.1	39
22	Microwave properties of sphere-, flake-, and disc-shaped BaFe12O19 nanoparticle inks for high-frequency applications on printed electronics. Journal of Magnetism and Magnetic Materials, 2016, 419, 218-224.	2.3	8
23	Rheology of inks for various techniques of printed electronics. Advances in Intelligent Systems and Computing, 2016, , 447-451.	0.6	5
24	Simple optical method for recognizing physical parameters of graphene nanoplatelets materials. , 2015, , .		0
25	Graphene-based dipole antenna for a UHF RFID tag. , 2015, , .		6
26	The influence of graphene screen printing paste's composition on its viscosity. Proceedings of SPIE, 2015, , .	0.8	6
27	Detection of subsurface defects and measurement of thickness of screen layers made of graphene and carbon nanotubes with application of full-field optical coherence tomography in Linnik configuration. , 2015, , .		1
28	Graphene electrodes for voltammetric measurements in biological fluids. Circuit World, 2015, 41, 112-115.	0.9	2
29	Influence of electric field on separation and orientation of carbon nanotubes in spray coated layers. Circuit World, 2015, 41, 107-111.	0.9	2
30	Perovskite-type KTaO ₃ –reduced graphene oxide hybrid with improved visible light photocatalytic activity. RSC Advances, 2015, 5, 91315-91325.	3.6	49
31	Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	11
32	Screen-Printed Resistive Pressure Sensors Containing Graphene Nanoplatelets and Carbon Nanotubes. Sensors, 2014, 14, 17304-17312.	3.8	50
33	Printed electroluminescent structures for smart cards. , 2014, , .		0
34	Electroluminescent structures with nanomaterials for direct printing of interactive packages and labels. , 2014, , .		2
35	Electroluminescent structures printed on paper and textile elastic substrates. Circuit World, 2014, 40, 13-16.	0.9	36
36	Optical measurements of selected properties of nanocomposite layers with graphene and carbon nanotubes fillers. , 2014, , .		0

MARCIN SLOMA

#	Article	IF	CITATIONS
37	Influence of Carbon Nanoparticles Morphology on Physical Properties of Polymer Composites. Acta Physica Polonica A, 2014, 125, 861-863.	0.5	15
38	Radio Frequency Characteristics of Printed Meander Inductors and Interdigital Capacitors. Japanese Journal of Applied Physics, 2013, 52, 05DC08.	1.5	0
39	Influence of electrical stress on printed polymer resistors filled with carbon nanomaterials. Materials Science-Poland, 2013, 31, 548-554.	1.0	0
40	Inkjet-Printed Memristor: Printing Process Development. Japanese Journal of Applied Physics, 2013, 52, 05DB21.	1.5	9
41	Experimental evaluation of ITO, AZO, TiO <inf>2</inf> and CNT compounds as transparent conductive layers for flexible PV structures. , 2013, , .		0
42	Carbon footprint of electronic devices. Proceedings of SPIE, 2013, , .	0.8	5
43	SAC 305 solder paste with carbon nanotubes – part I: investigation of the influence of the carbon nanotubes on the SAC solder paste properties. Soldering and Surface Mount Technology, 2012, 24, 267-279.	1.5	19
44	Comparison of ZnO:Al, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1292-1298.	3.5	30
45	Printed electroluminescent structures fabricated with metal-free compositions filled with carbon and ceramics nanomaterials. , 2011, , .		0
46	Investigations on printed elastic resistors containing carbon nanotubes. Journal of Materials Science: Materials in Electronics, 2011, 22, 1321-1329.	2.2	11
47	Printed transparent electrodes containing carbon nanotubes for elastic circuits applications with enhanced electrical durability under severe conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 358-362.	3.5	15
48	Electrical performance of carbon nanotube-polymer composites at frequencies up to 220 GHz. Applied Physics Letters, 2011, 99, .	3.3	16
49	Flexible Temperature Sensors on Fibers. Sensors, 2010, 10, 7934-7946.	3.8	157
50	Investigation of properties of the SAC solder paste with the silver nanoparticle and carbon nanotube additives and the nano solder joints. , 2010, , .		4
51	Polymer composites based on carbon nanotubes for printed electronics. , 2009, , .		4
52	<title>Multiwalled carbon nanotubes deposition in thick film silver conductor</title> . Proceedings of SPIE, 2007, , .	0.8	1