List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6595622/publications.pdf Version: 2024-02-01

FA-TANC LI

#	Article	IF	CITATIONS
1	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	5.8	1,496
2	In Situ Microwave-Assisted Synthesis of Porous N-TiO ₂ /g-C ₃ N ₄ Heterojunctions with Enhanced Visible-Light Photocatalytic Properties. Industrial & Engineering Chemistry Research, 2013, 52, 17140-17150.	1.8	338
3	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, 17590-17610.	2.8	312
4	Novel BiOCl–C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chemical Engineering Journal, 2013, 234, 361-371.	6.6	290
5	Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. Journal of Hazardous Materials, 2015, 283, 371-381.	6.5	241
6	Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 353, 15-24.	6.6	194
7	Nanoâ€Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angewandte Chemie - International Edition, 2019, 58, 15076-15081.	7.2	185
8	Enhanced Schottky effect of a 2D–2D CoP/g-C ₃ N ₄ interface for boosting photocatalytic H ₂ evolution. Nanoscale, 2018, 10, 12315-12321.	2.8	174
9	Ionic liquid self-combustion synthesis of BiOBr/Bi ₂₄ O ₃₁ Br ₁₀ heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale, 2015, 7, 1116-1126.	2.8	173
10	Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. Journal of Hazardous Materials, 2015, 292, 126-136.	6.5	166
11	In-situ one-step synthesis of novel BiOCl/Bi24O31Cl10 heterojunctions via self-combustion of ionic liquid with enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental, 2014, 150-151, 574-584.	10.8	152
12	Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chemical Engineering Journal, 2011, 173, 750-759.	6.6	128
13	Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chemistry, 2009, 11, 883.	4.6	127
14	N-doped P25 TiO2–amorphous Al2O3 composites: One-step solution combustion preparation and enhanced visible-light photocatalytic activity. Journal of Hazardous Materials, 2012, 239-240, 118-127.	6.5	123
15	Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Materials Letters, 2010, 64, 223-225.	1.3	122
16	Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark. ACS Applied Materials & amp; Interfaces, 2017, 9, 12687-12693.	4.0	115
17	Ionic-liquid-assisted synthesis of high-visible-light-activated N–B–F-tri-doped mesoporous TiO2 via a microwave route. Applied Catalysis B: Environmental, 2014, 144, 442-453.	10.8	113
18	Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid. Journal of Hazardous Materials, 2012, 205-206, 164-170.	6.5	110

#	Article	IF	CITATIONS
19	Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. Journal of Hazardous Materials, 2012, 235-236, 186-193.	6.5	100
20	Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Applied Catalysis B: Environmental, 2018, 224, 841-853.	10.8	99
21	A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets. Scientific Reports, 2016, 6, 24918.	1.6	97
22	Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 16019-16026.	7.2	96
23	Room temperature synthesis of Bi ₄ O ₅ I ₂ and Bi ₅ O ₇ I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Transactions, 2016, 45, 7720-7727.	1.6	95
24	Oxidative Desulfurization of Thiophene Catalyzed by (C ₄ H ₉) ₄ NBr·2C ₆ H ₁₁ NO Coordinated Ionic Liquid. Energy & Fuels, 2008, 22, 3065-3069.	2.5	94
25	An inexpensive N-methyl-2-pyrrolidone-based ionic liquid as efficient extractant and catalyst for desulfurization of dibenzothiophene. Chemical Engineering Journal, 2015, 274, 192-199.	6.6	91
26	Deep Extractive Desulfurization of Gasoline with <i>x</i> Et ₃ NHCl·FeCl ₃ lonic Liquids. Energy & Fuels, 2010, 24, 4285-4289.	2.5	88
27	Metalloid Ni2P and its behavior for boosting the photocatalytic hydrogen evolution of Caln2S4. International Journal of Hydrogen Energy, 2018, 43, 219-228.	3.8	82
28	Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14953-14961.	3.2	81
29	Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe2O3 prepared by solution combustion. Catalysis Science and Technology, 2012, 2, 1455.	2.1	77
30	Structure Modification Function of g ₃ N ₄ for Al ₂ O ₃ in the In Situ Hydrothermal Process for Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2015, 21, 10149-10159.	1.7	74
31	Optimization of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent. Journal of Fuel Chemistry and Technology, 2009, 37, 194-198.	0.9	73
32	Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chemical Engineering Journal, 2021, 421, 129915.	6.6	71
33	Preparation of TiO ₂ in Ionic Liquid via Microwave Radiation and in Situ Photocatalytic Oxidative Desulfurization of Diesel Oil. Energy & Fuels, 2012, 26, 6777-6782.	2.5	70
34	Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 28327-28336.	3.8	69
35	Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids. Materials Letters, 2011, 65, 406-408.	1.3	51
36	Surface P atom grafting of g-C ₃ N ₄ for improved local spatial charge separation and enhanced photocatalytic H ₂ production. Journal of Materials Chemistry A, 2019, 7, 7628-7635.	5.2	50

#	Article	IF	CITATIONS
37	Construction of β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. Journal of Hazardous Materials, 2021, 401, 123262.	6.5	47
38	One-step construction of {001} facet-exposed BiOCl hybridized with Al ₂ O ₃ for enhanced molecular oxygen activation. Catalysis Science and Technology, 2016, 6, 7985-7995.	2.1	45
39	Precipitation Synthesis of Mesoporous Photoactive Al ₂ O ₃ for Constructing g-C ₃ N ₄ -Based Heterojunctions with Enhanced Photocatalytic Activity. Industrial & Engineering Chemistry Research, 2014, 53, 19540-19549.	1.8	44
40	The simultaneous adsorption, activation and <i>in situ</i> reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies. Nanoscale, 2021, 13, 2585-2592.	2.8	41
41	Construction of g-C 3 N 4 /Al 2 O 3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity. Applied Surface Science, 2017, 394, 340-350.	3.1	39
42	Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency. International Journal of Hydrogen Energy, 2016, 41, 3888-3895.	3.8	38
43	In-situ construction of sequential heterostructured CoS/CdS/CuS for building "electron-welcome zone―to enhance solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2022, 300, 120763.	10.8	38
44	A one-step synthesis of hierarchical porous CoFe-layered double hydroxide nanosheets with optimized composition for enhanced oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2020, 7, 737-745.	3.0	35
45	One-step synthesis of defected Bi2Al4O9/ \hat{l}^2 -Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy and Environment, 2021, 6, 244-252.	4.7	35
46	In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities. Materials Letters, 2014, 124, 1-3.	1.3	33
47	Unraveling the importance between electronic intensity and oxygen vacancy on photothermocatalytic toluene oxidation over CeO2. Chemical Engineering Journal, 2022, 433, 134619.	6.6	31
48	Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds. Advances in Colloid and Interface Science, 2020, 284, 102275.	7.0	30
49	Simultaneous construction of dual-site phosphorus modified g-C3N4 and its synergistic mechanism for enhanced visible-light photocatalytic hydrogen evolution. Applied Surface Science, 2020, 517, 146192.	3.1	29
50	TiO2/SBA-15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity. Materials Letters, 2013, 99, 38-41.	1.3	28
51	Facile synthesis of flower-like BiOI hierarchical spheres at room temperature with high visible-light photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 112-120.	1.7	26
52	Deep insight into the photocatalytic activity and electronic structure of amorphous earth-abundant MgAl ₂ O ₄ . Inorganic Chemistry Frontiers, 2017, 4, 1832-1840.	3.0	26
53	<i>In situ</i> synthesis of Cl-doped Bi ₂ O ₂ CO ₃ and its enhancement of photocatalytic activity by inducing generation of oxygen vacancies. Inorganic Chemistry Frontiers, 2020, 7, 2969-2978.	3.0	23
54	Construction of adjustable dominant {314} facet of Bi5O7I and facet-oxygen vacancy coupling dependent adsorption and photocatalytic activity. Applied Catalysis B: Environmental, 2021, 289, 120041.	10.8	23

#	Article	IF	CITATIONS
55	One-step synthesis, electronic structure, and photocatalytic activity of earth-abundant visible-light-driven FeAl ₂ O ₄ . Physical Chemistry Chemical Physics, 2017, 19, 9392-9401.	1.3	22
56	Promoting photocatalytic CO2 reduction to CH4 via a combined strategy of defects and tunable hydroxyl radicals. Journal of Colloid and Interface Science, 2022, 606, 1477-1487.	5.0	22
57	Ultrathin porous nanosheet-assembled hollow cobalt nickel oxide microspheres with optimized compositions for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1886-1893.	3.0	21
58	The synergy between Ti species and g-C ₃ N ₄ by doping and hybridization for the enhancement of photocatalytic H ₂ evolution. Dalton Transactions, 2015, 44, 17859-17866.	1.6	20
59	Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. Chinese Journal of Catalysis, 2021, 42, 1040-1050.	6.9	20
60	A realâ€time Mooneyâ€viscosity prediction model of the mixed rubber based on the Independent Component Regressionâ€Gaussian Process algorithm. Journal of Chemometrics, 2012, 26, 557-564.	0.7	19
61	Extractive/catalytic oxidative mechanisms over [Hnmp]Cl· <i>x</i> FeCl ₃ ionic liquids towards the desulfurization of model oils. New Journal of Chemistry, 2019, 43, 7725-7732.	1.4	19
62	Low-Temperature Methane Oxidation Triggered by Peroxide Radicals over Noble-Metal-Free MgO Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 21761-21771.	4.0	18
63	Kinetics and Mechanism of the Photo-oxidation of Thiophene by O2 Adsorbed on Molecular Sieves. Chemical Research in Chinese Universities, 2008, 24, 96-100.	1.3	17
64	Oxidation Desulfurization of Thiophene Using Phase Transfer Catalyst/H ₂ O ₂ Systems. Petroleum Science and Technology, 2008, 26, 1099-1107.	0.7	17
65	Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency. Applied Surface Science, 2021, 559, 149876.	3.1	17
66	Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting. Angewandte Chemie, 2021, 133, 16155-16162.	1.6	16
67	Optimization of Oxidative Desulfurization of Dibenzothiophene Using a Coordinated Ionic Liquid as Catalytic Solvent. Petroleum Science and Technology, 2009, 27, 1907-1918.	0.7	15
68	Nanoâ€Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angewandte Chemie, 2019, 131, 15220-15225.	1.6	15
69	Introduction of CoCl ₂ ·6H ₂ O into Co ₃ O ₄ for enhancement of hydroxyl radicals and effective charge separation. Dalton Transactions, 2016, 45, 2444-2453.	1.6	14
70	Oxidation of Thiophene over Modified Alumina Catalyst under Mild Conditions. Energy & Fuels, 2010, 24, 3443-3445.	2.5	12
71	Tuning electronic structure via CoS clusters for visual photocatalytic H2 production and mechanism insight. Chemical Engineering Journal, 2022, 446, 137399.	6.6	12
72	One-step combustion synthesis of Î ² -Bi2O3-NiO/Ni composites and their visible light photocatalytic performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 186, 41-47.	1.7	11

#	Article	IF	CITATIONS
73	Encapsulating N‑doped graphite carbon in MoO2 as a novel cocatalyst for boosting photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 623, 267-276.	5.0	11
74	One-Step Oxidative Desulfurization of Dibenzothiophene Using Cyclohexanone Peroxide in N-Alkyl-imidazolium–Based Ionic Liquid Extraction Systems. Petroleum Science and Technology, 2012, 30, 385-392.	0.7	9
75	Plasmonic-enhanced ferroelectric photovoltaic effect in 0–3 type BaTiO3-Au ceramics. Journal of Alloys and Compounds, 2019, 785, 584-589.	2.8	9
76	Study on photosensitized oxidative desulfurization of thiophene by riboflavin. Journal of Fuel Chemistry and Technology, 2008, 36, 161-164.	0.9	8
77	Facile Ionic Liquid Combustion Synthesis and Visible-light Photocatalytic Ability of Mesoporous FeAl2O4 with High Specific Surface Area. Chemistry Letters, 2014, 43, 1743-1745.	0.7	8
78	Construction of Dual-Defective Al ₂ O ₃ /Bi1 ₂ O ₁₇ Cl ₂ Heterojunctions for Enhanced Photocatalytic Molecular Oxygen Activation via Defect Coupling and Charge Separation. Industrial & Engineering Chemistry Research, 2022, 61, 441-452.	1.8	7
79	Synthesis and characterization of BiOI/montmorillonite composites with high visible light photocatalytic activity. Russian Journal of Physical Chemistry A, 2015, 89, 2313-2319.	0.1	6
80	Photochemical Oxidation of Thiophene by O ₂ in an Oil/Acetonitrile Twoâ€Phase Extraction System. Annals of the New York Academy of Sciences, 2008, 1140, 383-388.	1.8	5
81	The Photooxidative Desulfurization of Thiophene with Tetrabutylammonium Bromide as a Phase Transfer Catalyst. Petroleum Science and Technology, 2010, 28, 1140-1146.	0.7	4
82	Photochemical oxidation of thiophene by O2 in an organic two-phase liquid-liquid extraction system. Petroleum Chemistry, 2007, 47, 448-451.	0.4	3
83	Reverse construction of dominant/secondary facets in Bi24O31Br10 photocatalysts for boosting electronic transfer. Chemical Communications, 2021, 57, 9676-9679.	2.2	1
84	Insight into the relationship of redox ability and separation efficiency via the case of α-Bi2O3/Bi5NO3O7. Inorganic Chemistry Frontiers, 0, , .	3.0	1
85	Photosensitized Oxidative Desulfurization of Thiophene by Riboflavin. , 2009, , .		0