
Ken Kokubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6595431/publications.pdf Version: 2024-02-01

KEN KOKUBO

#	Article	IF	CITATIONS
1	Gold Nanoparticles Stabilized by Molecular Fullerenols. ChemNanoMat, 2020, 6, 524-528.	1.5	6
2	Dielectric and Sorption Responses of Hydrogen-Bonding Network of Amorphous C ₆₀ (OH) ₁₂ and C ₆₀ (OH) ₃₆ . Journal of Physical Chemistry C, 2019, 123, 23545-23553.	1.5	9
3	New 3D-stereoconfigurated cis-tris(fluorenylphenylamino)-benzene with large steric hindrance to minimize π–π stacking in thin-film devices. Dyes and Pigments, 2018, 149, 377-386.	2.0	5
4	Structure of [60]fullerene with a mobile lithium cation inside. Royal Society Open Science, 2018, 5, 180337.	1.1	16
5	Regioselective Grignard Addition to the Bridgehead Double Bond of Alkylazafulleroids through N–Mg Coordination. Chemistry Letters, 2017, 46, 947-949.	0.7	0
6	Hydration or hydroxylation: direct synthesis of fullerenol from pristine fullerene [C ₆₀] via acoustic cavitation in the presence of hydrogen peroxide. RSC Advances, 2017, 7, 31930-31939.	1.7	40
7	The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters. Scientific Reports, 2017, 7, 9579.	1.6	37
8	Thermal and thermoâ€oxidative stability of thermoplastic polymer nanocomposites with arylated [60]fullerene derivatives. Polymer Composites, 2016, 37, 1143-1151.	2.3	10
9	Regioselective addition of Grignard reagents to tosylazafulleroid and derivatization to 1,2-disubstituted [60]fullerene. Organic and Biomolecular Chemistry, 2016, 14, 7103-7108.	1.5	5
10	Potential Suppressive Effects of Two C60 Fullerene Derivatives on Acquired Immunity. Nanoscale Research Letters, 2016, 11, 449.	3.1	12
11	Electrochemical reduction of cationic Li ⁺ @C ₆₀ to neutral Li ⁺ @C ₆₀ Ë™ ^{â^`} : isolation and characterisation of endohedral [60]fulleride. Chemical Science, 2016, 7, 5770-5774.	3.7	40
12	Spiro-1,3-dioxolanofullerenes with Low-lying LUMO Level for Organic Solar Cells. Chemistry Letters, 2015, 44, 282-284.	0.7	10
13	Synthesis and Photoluminescent Properties of Geometrically Hindered cis-Tris(diphenylaminofluorene) as Precursors to Light-Emitting Devices. Molecules, 2015, 20, 4635-4654.	1.7	6
14	Hetero Bis-Addition of Spiro-Acetalized or Cyclohexanone Ring to 58ï€ Fullerene Impacts Solubility and Mobility Balance in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 12894-12902.	4.0	13
15	Stereochemistry of Spiro-Acetalized [60]Fullerenes: How the <i>Exo</i> and <i>Endo</i> Stereoisomers Influence Organic Solar Cell Performance. ACS Applied Materials & Interfaces, 2015, 7, 8915-8922.	4.0	12
16	Oxidative deamination of azafulleroids into C ₆₀ by peracids. Organic and Biomolecular Chemistry, 2015, 13, 5038-5043.	1.5	6
17	Hydroxylated fullerene: a potential antiinflammatory and antioxidant agent for preventing mouse preterm birth. American Journal of Obstetrics and Gynecology, 2015, 213, 708.e1-708.e9.	0.7	20
18	New efficient (thio)acetalized fullerene monoadducts for organic solar cells: characterization based on solubility, mobility balance, and dark current. Journal of Materials Chemistry A, 2015, 3, 1152-1157.	5.2	23

Κεν Κοκυβο

#	Article	IF	CITATIONS
19	Synthesis of Pyrrolidinofullerenes via Single Electron Transfer Reaction of Aryldienamines with C60. Heterocycles, 2015, 90, 1168.	0.4	1
20	Effect of surface polishing on SCC susceptibility of sensitised type 304 stainless steel. Corrosion Engineering Science and Technology, 2014, 49, 156-159.	0.7	3
21	Radical-scavenging Ability of Hydrophilic Carbon Nanoparticles: From Fullerene to Its Soot. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 250-261.	1.0	7
22	Systematic Evaluation and Mechanistic Investigation of Antioxidant Activity of Fullerenols Using <i>β</i> -Carotene Bleaching Assay. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	29
23	Dramatic Mechanistic Change in Acidâ€Catalyzed Arylation of Azafulleroids Depending on their Ambident N/C Basicity: Formation of Cyclopentene Centered Pentakisadduct. Chemistry - an Asian Journal, 2014, 9, 3084-3088.	1.7	8
24	First synthesis and aggregation behaviour of periconjugated triazoliumfullerene. Chemical Communications, 2014, 50, 581-583.	2.2	14
25	Kinetic Study of the Diels–Alder Reaction of Li ⁺ @C ₆₀ with Cyclohexadiene: Greatly Increased Reaction Rate by Encapsulated Li ⁺ . Journal of the American Chemical Society, 2014, 136, 11162-11167.	6.6	82
26	Effect of functional group polarity on the encapsulation of C60 derivatives in the inner space of carbon nanohorns. Carbon, 2014, 68, 346-351.	5.4	3
27	Application of fullerenes-extracted soot modified with ethylenediamine as a novel adsorbent of hexavalent chromium in water. Journal of Environmental Chemical Engineering, 2014, 2, 1191-1198.	3.3	11
28	Exploring Photovoltaic Feasibility of Pentaaryl [60]Fullerene in Bulk Heterojunction Architecture. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 553-556.	0.1	2
29	Unexpected [3 + 2] Cycloaddition of Diphenyldienamine with C60 via Single Electron Transfer and Hydrogen Shift of the Radical Cation Intermediate. Chemistry Letters, 2014, 43, 1648-1650.	0.7	2
30	Synthesis and Application of Novel Functional Molecules by Inner and Outer Control of Fullerenyl Cage Focused on the Spherical Reaction Sites. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1348-1359.	0.0	0
31	Magic number effect on cluster formation of polyhydroxylated fullerenes in water–alcohol binary solution. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4
32	lonic conductivity of [Li+@C60](PF6â^') in organic solvents and its electrochemical reduction to Li+@C60誉^'. Chemical Communications, 2013, 49, 7376.	2.2	33
33	Synthesis of a new class of fullerene derivative Li+@C60Oâ^'(OH)7 as a "cation-encapsulated anion nanoparticle― Nanoscale, 2013, 5, 2317.	2.8	15
34	Synthesis and characterization of new acetalized [60]fullerenes. Tetrahedron Letters, 2013, 54, 3510-3513.	0.7	7
35	Synthesis of a New Class of Molecule Li+@C60O–(OH)7 as a "Cation-Encapsulated Anion Nanoparticle― by Multihydroxylation of Li-Encapsulated Fullerene. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
36	Synthesis, Properties, and Applications of Hydrophilic Hollow Carbon Nanoparticles from C ₆₀ and its Soot. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	1

Кем Кокиво

#	Article	IF	CITATIONS
37	Facile and Exclusive Formation of Aziridinofullerenes by Acid-catalyzed Denitrogenation of Triazolinofullerenes. Organic Letters, 2012, 14, 6040-6043.	2.4	18
38	Synthesis of a lithium-encapsulated fullerenol and the effect of the internal lithium cation on its aggregation behavior. Nano Research, 2012, 5, 558-564.	5.8	19
39	Polyhydroxylated fullerene C60(OH)44 suppresses intracellular lipid accumulation together with repression of intracellular superoxide anion radicals and subsequent PPAR ³ ² expression during spontaneous differentiation of OP9 preadipocytes into adipocytes. Molecular and Cellular Biochemistry, 2012, 366, 191-200.	1.4	25
40	Thermal [2 + 2] Cycloaddition of Morpholinoenamines with C60via a Single Electron Transfer. Organic Letters, 2011, 13, 4244-4247.	2.4	19
41	Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Research, 2011, 4, 204-215.	5.8	105
42	Chemical mechanical polishing of patterned copper wafer surface using water-soluble fullerenol slurry. CIRP Annals - Manufacturing Technology, 2011, 60, 567-570.	1.7	20
43	Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. Journal of Photochemistry and Photobiology B: Biology, 2011, 102, 69-76.	1.7	70
44	Polymer nanocomposites reinforced with C ₆₀ fullerene: effect of hydroxylation. Journal of Composite Materials, 2011, 45, 2595-2601.	1.2	17
45	A new approach to benzofuran synthesis: Lewis acid mediated cycloaddition of benzoquinones with stilbene oxides. Tetrahedron Letters, 2010, 51, 955-958.	0.7	28
46	Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radical Research, 2010, 44, 1072-1081.	1.5	32
47	Synthesis and Regiochemistry of [60]Fullerenyl 2-Methylmalonate Bisadducts and their Facile Electron-Accepting Properties. Journal of Organic Chemistry, 2010, 75, 4574-4583.	1.7	16
48	Structural Analysis of Novel [60]Fullerene Bisadduct Regioisomers by DFT Calculation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1176-1181.	1.2	2
49	Oneâ€step Synthesis of Waterâ€soluble Fullerenols Bearing Nitrogenâ€containing Substituents. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 440-456.	1.0	22
50	Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces. CIRP Annals - Manufacturing Technology, 2009, 58, 495-498.	1.7	22
51	Synthesis of Highly Luminescent <i>Tris</i> -Fluorenyl Chromophores as Intermediates of Potential Nonlinear Photonic Materials. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1165-1171.	1.2	Ο
52	Antimicrobial Activity of Fullerenes and Their Hydroxylated Derivatives. Biocontrol Science, 2009, 14, 69-72.	0.2	87
53	C11 Effect of Fullerene Poly-hydroxide on Cu-CMP Process(Abrasive finishing technology). Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2009, 2009.5, 391-394.	0.0	Ο
54	Effects of Pin-up Oxygen on [60]Fullerene for Enhanced Antioxidant Activity. Nanoscale Research Letters, 2008, 3, .	3.1	13

Κεν Κοκυβο

#	Article	IF	CITATIONS
55	Facile Synthesis of Highly Water-Soluble Fullerenes More Than Half-Covered by Hydroxyl Groups. ACS Nano, 2008, 2, 327-333.	7.3	207
56	AlCl3-Catalyzed Tandem Acetylation of Hydroarylated [60]Fullerenes. Organic Letters, 2008, 10, 3335-3338.	2.4	16
57	Stereoelectronic Effects in Diastereoselective Formation of Fulleroids. Organic Letters, 2007, 9, 4045-4048.	2.4	13
58	Kinetic Substituent and Solvent Effects in 1,3-Dipolar Cycloaddition of Diphenyldiazomethanes with Fullerenes C60and C70:Â A Comparison with the Addition to TCNE, DDQ, and Chloranil. Journal of Organic Chemistry, 2006, 71, 2995-3000.	1.7	25
59	Supramolecular Triplet Photosensitizer. Effects of the Cation Binding Mode onEâ^'Zlsomerization of 1,2-Dichloroethylene. Organic Letters, 2006, 8, 1597-1600.	2.4	10
60	Antioxidant Activity of Supramolecular Water-Soluble Fullerenes Evaluated by β-Carotene Bleaching Assay. Bioscience, Biotechnology and Biochemistry, 2006, 70, 3088-3093.	0.6	57
61	Acid-Catalyzed Transannular Cyclization of 3aH-Cyclopentene[8]annulene-1,4-(5H,9aH)-diones and Some Proposed Mechanisms. Journal of Organic Chemistry, 2005, 70, 8364-8371.	1.7	10
62	Site Selectivity Switch in Lewis Acid Catalysis. Mechanism and Kinetic Simulation of Skeletal Rearrangement of Cyclobutene-Fused Homoquinones. Journal of Organic Chemistry, 2005, 70, 7776-7779.	1.7	6
63	Kinetic Evidence for Remote ï€-Aryl Participation in the BF3-Catalyzed Rearrangement of [2 + 2] Photocycloadducts of Diarylhomobenzoquinones with Diphenylacetylene. Organic Letters, 2004, 6, 4081-4084.	2.4	10
64	Mechanism of Novel Consecutive Rearrangements of Cyclobutene-Fused Diphenylhomobenzoquinones Catalyzed by Lewis Acids. Journal of Organic Chemistry, 2004, 69, 4577-4585.	1.7	12
65	Reaction of Quinones with Diazoalkanes and Some Synthetic Application. ChemInform, 2003, 34, no.	0.1	0
66	Reaction of Quinones with Diazoalkanes and Some Synthetic Application. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 360-369.	0.0	1
67	Photochemistry of Homoquinones. , 2003, , .		0
68	Cation-Recognized Photosensitization inEâ^'ZIsomerization of 1,2-Dichloroethylene by Crowned Benzophenones. Journal of the American Chemical Society, 2002, 124, 6548-6549.	6.6	9
69	Substituent Effects on the Stereochemistry in the [2 + 2] Photocycloaddition Reaction of Homobenzoquinone Derivative with Variously Substituted Alkenes and Alkynes. Journal of the American Chemical Society, 2002, 124, 8912-8921.	6.6	24
70	Substituent Effects on the Stereochemistry in the [2 + 2] Photocycloaddition Reaction of Homobenzoquinone Derivative with Variously Substituted Alkenes and Alkynes ChemInform, 2002, 33, 35-35.	0.1	0
71	Lewis acid-catalyzed successive skeletal rearrangement of cyclobutene-fused diphenylhomoquinone. Tetrahedron Letters, 2001, 42, 5025-5028.	0.7	12
72	Effects of Cation Recognition on 1,3-Dipolar Cycloaddition of Crowned Diphenyldiazomethanes with Maleic Anhydride. Chemistry Letters, 2000, 29, 1284-1285.	0.7	4

Кем Кокиво

#	Article	IF	CITATIONS
73	Steric Effects in Photoinduced Electron Transfer Reaction of Halogenated 1,4-Benzoquinones with Donor Olefins. Organic Letters, 2000, 2, 1979-1981.	2.4	8
74	Regio- andendo-Selective [2 + 2] Photocycloadditions of Homobenzoquinones with Ethyl Vinyl Ether. Journal of Organic Chemistry, 2000, 65, 3371-3378.	1.7	12
75	Conformational Specificity in Photoinduced Intramolecular 1,7-Hydrogen Abstraction of Homonaphthoquinones with a Spiro-Linked Dibenzocycloheptene Ring. Organic Letters, 2000, 2, 559-562.	2.4	1
76	Conformation and thermal inversion of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring spiro-linked to homoquinones. Journal of the Chemical Society Perkin Transactions II, 1999, , 1783-1790.	0.9	3
77	Reaction of 2-Hydroxybenzaldehydes with Alkynes, Alkenes, or Allenes via Cleavage of the Aldehyde C–H Bond Using a Rhodium Catalyst System. Bulletin of the Chemical Society of Japan, 1999, 72, 303-311.	2.0	111
78	Rhodium-catalyzed reaction of aroyl chlorides with alkynes or alkenes in the presence of disilanes. Journal of Organometallic Chemistry, 1998, 560, 217-222.	0.8	19
79	Rhodium-Catalyzed Coupling Reaction of Salicyl Aldehydes with Alkynes via Cleavage of the Aldehyde Câ^'H Bond. Journal of Organic Chemistry, 1997, 62, 4564-4565.	1.7	131
80	Rhodium-Catalyzed Reaction of Aroyl Chlorides with Alkynes. Journal of Organic Chemistry, 1996, 61, 6941-6946.	1.7	149
81	Rhodium-Catalyzed Reaction of Benzoic Anhydride with Styrene under Molecular Hydrogen. Organometallics, 1995, 14, 4521-4524.	1.1	54
82	Effect of Copper and Iron Cocatalysts on the Palladium-Catalyzed Carbonylation Reaction of Iodobenzene. Organometallics, 1994, 13, 4431-4436.	1.1	52
83	Water-Soluble Single-Nano Carbon Particles: Fullerenol and Its Derivatives. , 0, , .		4