
Shreyam Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	6.4	12
2	Innentitelbild: Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models (Angew. Chem. 6/2022). Angewandte Chemie, 2022, 134, .	1.6	0
3	Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models. Angewandte Chemie, 2022, 134, .	1.6	0
4	Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annuleneâ€withinâ€anâ€Annulene Models. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
5	Power of an Organic Electron Acceptor in Modulation of Intracellular Mitochondrial Reactive Oxygen Species: Inducing JNK- and Caspase-Dependent Apoptosis of Cancer Cells. ACS Omega, 2021, 6, 7815-7828.	1.6	2
6	A Small Molecule with Bridged Carbonyl and Triâ€fluoroâ€acetoâ€phenone Groups Impedes Microtubule Dynamics and Subsequently Triggers Cancer Cell Apoptosis. ChemMedChem, 2021, 16, 2703-2714.	1.6	1
7	Nonfullerene acceptors for P3HT-based organic solar cells. Journal of Materials Chemistry A, 2021, 9, 18857-18886.	5.2	48
8	Correlation between the Dipole Moment of Nonfullerene Acceptors and the Active Layer Morphology of Green-Solvent-Processed P3HT-Based Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 19013-19022.	3.2	10
9	[2.2.2.2](2,7)â€1â€Bromonaphthalenophane from a Desymmetrized Building Block Bearing Electrophilic and Masked Nucleophilic Functionalities. Helvetica Chimica Acta, 2019, 102, e1800242.	1.0	1
10	9,10-Dihydro- <i>as</i> -indacenodithiophenes: Isomers with an <i>as</i> -Indacene Core. Journal of Organic Chemistry, 2019, 84, 3927-3939.	1.7	1
11	Fluorinated naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-containing π-conjugated compound: synthesis, properties, and acceptor applications in organic solar cells. NPG Asia Materials, 2018, 10, 1016-1028.	3.8	19
12	Naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole-Based Nonfullerene Acceptors: Effect of Substituents on the Thiophene Unit on Properties and Photovoltaic Characteristics. ACS Omega, 2018, 3, 5814-5824.	1.6	5
13	Influence of Terminal Imide Units on Properties and Photovoltaic Characteristics for Benzothiadiazole-based Nonfullerene Acceptors. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 557-560.	0.1	6
14	Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i> ′]bis[1,2,5]thiadiazoleâ€Containing Ï€â€Conjugated Compound: Nonfull Electron Acceptor for Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 1161-1168.	erene 7.8	46
15	Solar Cells: Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i> ′]bis[1,2,5]thiadiazole ontaining π onjugated Compou Nonfullerene Electron Acceptor for Organic Photovoltaics (Adv. Funct. Mater. 8/2016). Advanced Functional Materials, 2016, 26, 1304-1304.	und: 7.8	1
16	Dye-sensitized solar cell from polyaniline–ZnS nanotubes and its characterization through impedance spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 20079-20088.	1.3	32
17	Poly[3-(2-hydroxyethyl)-2,5-thienylene] grafted reduced graphene oxide: an efficient alternate material of TiO2 in dye sensitized solar cells. Chemical Communications, 2013, 49, 4646.	2.2	24
18	Nanochannel morphology of polypyrrole–ZnO nanocomposites towards dye sensitized solar cell application. Journal of Materials Chemistry A, 2013, 1, 12302.	5.2	41

#	Article	IF	CITATIONS
19	Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent. Carbon, 2013, 52, 509-519.	5.4	69
20	Tuning of the morphology of a riboflavin–melamine equimolar supramolecular assembly by in situ silver nanoparticle formation. Chemical Communications, 2011, 47, 11510.	2.2	35
21	Mechanism of polypyrrole and silver nanorod formation in lauric acid–cetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 2011, 161, 62-71.	2.1	27
22	Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acidâ€doped thermoreversible polyaniline gel. Polymer Engineering and Science, 2010, 50, 446-454.	1.5	12
23	Viscoelastic and conductivity properties of thermoreversible polyaniline–DNNSA gel in m-cresol. Synthetic Metals, 2010, 160, 1733-1739.	2.1	4