
Eugenia Mileykovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6594818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	16
2	Nobiletin: Targeting the Circadian Network to Promote Bioenergetics and Healthy Aging. Biochemistry (Moscow), 2020, 85, 1554-1559.	1.5	10
3	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
4	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2019, , 553-574.		0
5	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2017, , 1-22.		3
6	Functional Roles of Lipids in Membranes. , 2016, , 1-40.		8
7	The membrane: transertion as an organizing principle in membrane heterogeneity. Frontiers in Microbiology, 2015, 6, 572.	3.5	52
8	Altered Lipid Synthesis by Lack of Yeast Pah1 Phosphatidate Phosphatase Reduces Chronological Life Span. Journal of Biological Chemistry, 2015, 290, 25382-25394.	3.4	47
9	Role of Cardiolipin in Mitochondrial Supercomplex Assembly. , 2015, , 81-106.		3
10	N-acylated Peptides Derived from Human Lactoferricin Perturb Organization of Cardiolipin and Phosphatidylethanolamine in Cell Membranes and Induce Defects in Escherichia coli Cell Division. PLoS ONE, 2014, 9, e90228.	2.5	35
11	Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids, 2014, 179, 42-48.	3.2	208
12	Cardiolipin-dependent Reconstitution of Respiratory Supercomplexes from Purified Saccharomyces cerevisiae Complexes III and IV. Journal of Biological Chemistry, 2013, 288, 401-411.	3.4	124
13	Arrangement of the Respiratory Chain Complexes in Saccharomyces cerevisiae Supercomplex III2IV2 Revealed by Single Particle Cryo-Electron Microscopy. Journal of Biological Chemistry, 2012, 287, 23095-23103.	3.4	112
14	Daptomycin Resistance in Enterococci Is Associated with Distinct Alterations of Cell Membrane Phospholipid Content. PLoS ONE, 2012, 7, e43958.	2.5	126
15	Adenine Nucleotide-dependent Regulation of Assembly of Bacterial Tubulin-like FtsZ by a Hypermorph of Bacterial Actin-like FtsA*. Journal of Biological Chemistry, 2009, 284, 14079-14086.	3.4	53
16	Phosphatidic Acid and N-Acylphosphatidylethanolamine Form Membrane Domains in Escherichia coli Mutant Lacking Cardiolipin and Phosphatidylglycerol. Journal of Biological Chemistry, 2009, 284, 2990-3000.	3.4	73
17	Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2084-2091.	2.6	327

18 Functional roles of lipids in membranes. , 2008, , 1-37.

#	Article	IF	CITATIONS
19	Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504.	2.6	25
20	Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511.	2.6	20
21	Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239.	2.4	117
22	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	6.6	79
23	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	7.3	63
24	Subcellular localization ofEscherichia coliosmosensory transporter ProP: focus on cardiolipin membrane domains. Molecular Microbiology, 2007, 64, 1419-1422.	2.5	35
25	Electron microscopic structural analysis of mitochondrial supercomplex III 2 IV 2. FASEB Journal, 2007, 21, A612.	0.5	0
26	Use of NAO to study the content and organization of cardiolipin (CL) in membranes. FASEB Journal, 2006, 20, A952.	0.5	0
27	Cardiolipin in energy transducing membranes. Biochemistry (Moscow), 2005, 70, 154-158.	1.5	81
28	Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria. Journal of Biological Chemistry, 2005, 280, 29403-29408.	3.4	290
29	Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology, 2005, 8, 135-142.	5.1	137
30	Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 10484-10493.	3.4	68
31	Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 19-39.	2.6	110
32	A hypothesis to explain division site selection inEscherichia coliby combining nucleoid occlusion and Min. FEBS Letters, 2004, 561, 3-10.	2.8	34
33	Effects of Phospholipid Composition on MinD-Membrane Interactions in Vitro and in Vivo. Journal of Biological Chemistry, 2003, 278, 22193-22198.	3.4	148
34	Cardiolipin Is Not Required to Maintain Mitochondrial DNA Stability or Cell Viability for Saccharomyces cerevisiae Grown at Elevated Temperatures. Journal of Biological Chemistry, 2003, 278, 35204-35210.	3.4	36
35	Gluing the Respiratory Chain Together. Journal of Biological Chemistry, 2002, 277, 43553-43556.	3.4	552
36	Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Letters, 2001, 507, 187-190.	2.8	122

#	Article	IF	CITATIONS
37	Lack of Mitochondrial Anionic Phospholipids Causes an Inhibition of Translation of Protein Components of the Electron Transport Chain. Journal of Biological Chemistry, 2001, 276, 25262-25272.	3.4	160
38	Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange. Journal of Bacteriology, 2000, 182, 1172-1175.	2.2	412
39	Isolation and Characterization of the Gene (CLS1) Encoding Cardiolipin Synthase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 14933-14941.	3.4	193
40	Localization and Function of Early Cell Division Proteins in Filamentous Escherichia coli Cells Lacking Phosphatidylethanolamine. Journal of Bacteriology, 1998, 180, 4252-4257.	2.2	110