Mario Pedraza-Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of Flow Cytometry to Characterize Bacterial Physiological Responses. BioMed Research International, 2014, 2014, 1-14.	0.9	113
2	Spore Photoproduct Lyase from <i>Bacillus subtilis</i> Spores Is a Novel Iron-Sulfur DNA Repair Enzyme Which Shares Features with Proteins such as Class III Anaerobic Ribonucleotide Reductases and Pyruvate-Formate Lyases. Journal of Bacteriology, 1998, 180, 4879-4885.	1.0	99
3	Insect immune priming: ecology and experimental evidences. Ecological Entomology, 2016, 41, 351-366.	1.1	96
4	Novel Role of mfd : Effects on Stationary-Phase Mutagenesis in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 7512-7520.	1.0	69
5	Stationary Phase Mutagenesis in <i>B. subtilis</i> : A Paradigm to Study Genetic Diversity Programs in Cells Under Stress. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42, 327-339.	2.3	44
6	Transcription-Associated Mutation in <i>Bacillus subtilis</i> Cells under Stress. Journal of Bacteriology, 2010, 192, 3321-3328.	1.0	42
7	Interaction of Apurinic/Apyrimidinic Endonucleases Nfo and ExoA with the DNA Integrity Scanning Protein DisA in the Processing of Oxidative DNA Damage during Bacillus subtilis Spore Outgrowth. Journal of Bacteriology, 2014, 196, 568-578.	1.0	38
8	Contribution of the Mismatch DNA Repair System to the Generation of Stationary-Phase-Induced Mutants of Bacillus subtilis. Journal of Bacteriology, 2004, 186, 6485-6491.	1.0	37
9	Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes, 2016, 7, 33.	1.0	37
10	Defects in the Error Prevention Oxidized Guanine System Potentiate Stationary-Phase Mutagenesis in Bacillus subtilis. Journal of Bacteriology, 2009, 191, 506-513.	1.0	36
11	Role of the Nfo and ExoA Apurinic/Apyrimidinic Endonucleases in Repair of DNA Damage during Outgrowth of <i>Bacillus subtilis</i> Spores. Journal of Bacteriology, 2008, 190, 2031-2038.	1.0	35
12	Role of the Nfo (YqfS) and ExoA Apurinic/Apyrimidinic Endonucleases in Protecting Bacillus subtilis Spores from DNA Damage. Journal of Bacteriology, 2005, 187, 7374-7381.	1.0	32
13	Mismatch Repair Modulation of MutY Activity Drives <i>Bacillus subtilis</i> Stationary-Phase Mutagenesis. Journal of Bacteriology, 2011, 193, 236-245.	1.0	32
14	Essential residues in the chromate transporter ChrA ofPseudomonas aeruginosa. FEMS Microbiology Letters, 2004, 232, 107-112.	0.7	29
15	YtkD and MutT Protect Vegetative Cells but Not Spores of Bacillus subtilis from Oxidative Stress. Journal of Bacteriology, 2006, 188, 2285-2289.	1.0	26
16	Role of the Y-Family DNA Polymerases YqjH and YqjW in Protecting Sporulating BacillusÂsubtilis Cells from DNA Damage. Current Microbiology, 2010, 60, 263-267.	1.0	26
17	Transcriptional coupling of <scp>DNA</scp> repair in sporulating <i><scp>B</scp>acillus subtilis</i> cells. Molecular Microbiology, 2013, 90, 1088-1099.	1.2	25
18	Transcriptional De-Repression and Mfd Are Mutagenic in Stressed Bacillus subtilis Cells. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 45-58.	1.0	24

MARIO PEDRAZA-REYES

#	Article	IF	CITATIONS
19	Alternative Excision Repair of Ultraviolet B- and C-Induced DNA Damage in Dormant and Developing Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 6096-6104.	1.0	23
20	Detection of nine chitinase species in germinating cells ofMucor rouxii. Current Microbiology, 1991, 22, 43-46.	1.0	22
21	Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis. Journal of Bacteriology, 2015, 197, 1963-1971.	1.0	22
22	Error-Prone Processing of Apurinic/Apyrimidinic (AP) Sites by PolX Underlies a Novel Mechanism That Promotes Adaptive Mutagenesis in Bacillus subtilis. Journal of Bacteriology, 2014, 196, 3012-3022.	1.0	21
23	The ytkD (mutTA) Gene of Bacillus subtilis Encodes a Functional Antimutator 8-Oxo-(dGTP/GTP)ase and Is under Dual Control of Sigma A and Sigma F RNA Polymerases. Journal of Bacteriology, 2004, 186, 1050-1059.	1.0	20
24	Roles of Endonuclease V, Uracil-DNA Glycosylase, and Mismatch Repair in Bacillus subtilis DNA Base-Deamination-Induced Mutagenesis. Journal of Bacteriology, 2012, 194, 243-252.	1.0	20
25	Spore Photoproduct Lyase Operon (splAB) Regulation During Bacillus subtilis Sporulation: Modulation of splB-lacZ Fusion Expression by P1 Promoter Mutations and by an In-Frame Deletion of splA. Current Microbiology, 1997, 34, 133-137.	1.0	19
26	YqfS from Bacillus subtilis Is a Spore Protein and a New Functional Member of the Type IV Apurinic/Apyrimidinic-Endonuclease Family. Journal of Bacteriology, 2003, 185, 5380-5390.	1.0	19
27	Forespore-Specific Expression of Bacillus subtilis yqfS , Which Encodes Type IV Apurinic/Apyrimidinic Endonuclease, a Component of the Base Excision Repair Pathway. Journal of Bacteriology, 2003, 185, 340-348.	1.0	18
28	Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiology, 2019, 19, 26.	1.3	17
29	Role of the Nfo and ExoA Apurinic/Apyrimidinic Endonucleases in Radiation Resistance and Radiation-Induced Mutagenesis of Bacillus subtilis Spores. Journal of Bacteriology, 2011, 193, 2875-2879.	1.0	15
30	Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage. Applied and Environmental Microbiology, 2014, 80, 5493-5502.	1.4	15
31	Expression, Characterization and Synergistic Interactions of Myxobacter Sp. AL-1 Cel9 and Cel48 Glycosyl Hydrolases. International Journal of Molecular Sciences, 2008, 9, 247-257.	1.8	14
32	Replicative and integrative plasmids for production of human interferon gamma in Bacillus subtilis. Plasmid, 2010, 64, 170-176.	0.4	13
33	The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation. PLoS ONE, 2016, 11, e0150348.	1.1	13
34	Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores. FEMS Microbiology Letters, 2010, 302, 159-165.	0.7	11
35	Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation. Journal of Bacteriology, 2016, 198, 3345-3354.	1.0	10
36	Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. Journal of Bacteriology, 2017, 199, .	1.0	10

#	Article	IF	CITATIONS
37	Transcriptional coupling (Mfd) and <scp>DNA</scp> damage scanning (DisA) coordinate excision repair events for efficient <i>Bacillus subtilis</i> spore outgrowth. MicrobiologyOpen, 2018, 7, e00593.	1.2	10
38	LC–MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis. Current Genetics, 2018, 64, 215-222.	0.8	9
39	Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. Journal of Bacteriology, 2020, 202, .	1.0	9
40	Degradation of Single Stranded Nucleic Acids by the Chemical Nuclease Activity of the Metal Complex [Cu(phen)(nal)]+. Bioinorganic Chemistry and Applications, 2003, 1, 25-34.	1.8	8
41	Non-canonical processing of DNA photodimers with Bacillus subtilis UV-endonuclease YwjD, 5′→3′ exonuclease YpcP and low-fidelity DNA polymerases YqjH and YqjW. DNA Repair, 2018, 70, 1-9.	1.3	7
42	Mfd and transcriptional derepression cause genetic diversity in Bacillus subtilis. Frontiers in Bioscience - Elite, 2012, E4, 1246.	0.9	7
43	Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations. Current Microbiology, 2016, 73, 721-726.	1.0	6
44	Roles of <i>Bacillus subtilis</i> RecA, Nucleotide Excision Repair, and Translesion Synthesis Polymerases in Counteracting Cr(VI)-Promoted DNA Damage. Journal of Bacteriology, 2019, 201, .	1.0	6
45	YwqL (EndoV), ExoA and PolA act in a novel alternative excision pathway to repair deaminated DNA bases in Bacillus subtilis. PLoS ONE, 2019, 14, e0211653.	1.1	5
46	The Bacillus Subtilis K-State Promotes Stationary-Phase Mutagenesis via Oxidative Damage. Genes, 2020, 11, 190.	1.0	4
47	Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Frontiers in Microbiology, 2021, 12, 625705.	1.5	4
48	Genetic variation in oxidative stress and DNA repair genes in a Mexican population. Annals of Human Biology, 2013, 40, 355-359.	0.4	3
49	Novel Biochemical Properties and Physiological Role of the Flavin Mononucleotide Oxidoreductase YhdA from Bacillus subtilis. Applied and Environmental Microbiology, 2020, 86, .	1.4	3
50	Transcriptional coupling and repair of 8-OxoG activate a RecA-dependent checkpoint that controls the onset of sporulation in Bacillus subtilis. Scientific Reports, 2021, 11, 2513.	1.6	3
51	Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms, 2021, 9, 1284.	1.6	3
52	Molecular characterization of a G protein α-subunit-encoding gene fromMucor circinelloides. Canadian Journal of Microbiology, 2006, 52, 627-635.	0.8	2
53	Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS ONE, 2017, 12, e0179625.	1.1	2
54	Identification of Secondary Metabolites from Mexican Plants with Antifungal Activity against Pathogenic Candida Species. Journal of Chemistry, 2022, 2022, 1-19.	0.9	2

#	Article	IF	CITATIONS
55	Role of the novel protein TmcR in regulating the expression of the cel9–cel48 operon from Myxobacter sp. AL-1. Antonie Van Leeuwenhoek, 2009, 95, 239-248.	0.7	1
56	Transcription-Mediated Mutagenic Processes. , 2013, , 41-57.		1
57	Stationary-Phase-Induced Mutagenesis: Is Directed Mutagenesis Alive and Well within Neo-Darwinian Theory?. , 0, , 179-191.		1
58	Stationary-phase Mutagenesis Soft-agar Overlay Assays in Bacillus subtilis. Bio-protocol, 2017, 7, e2634.	0.2	0
59	Dynamics of Mismatch and Alternative Excision-Dependent Repair in Replicating Bacillus subtilis DNA Examined Under Conditions of Neutral Selection. Frontiers in Microbiology, 0, 13, .	1.5	0