Sander Bekeschus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6594086/publications.pdf

Version: 2024-02-01

194 papers 6,967 citations

45 h-index 72 g-index

215 all docs

215 docs citations

215 times ranked 2900 citing authors

#	Article	IF	CITATIONS
1	Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.	2.7	64
2	Conductivity augments ROS and RNS delivery and tumor toxicity of an argon plasma jet. Free Radical Biology and Medicine, 2022, 180, 210-219.	1.3	34
3	Cell cycle-related genes associate with sensitivity to hydrogen peroxide-induced toxicity. Redox Biology, 2022, 50, 102234.	3.9	9
4	Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers, 2022, 14, 813.	1.7	7
5	Cold Plasma Treatment for Chronic Wounds. , 2022, , 141-160.		1
6	How Safe is Plasma Treatment in Clinical Applications?. , 2022, , 99-126.		1
7	How Does Cold Plasma Work in Medicine?. , 2022, , 63-86.		3
8	Cold atmospheric pressure plasma treatment combined with starvation increases autophagy and apoptosis in melanoma inÂvitro and in vivo. Experimental Dermatology, 2022, 31, 1016-1028.	1.4	14
9	Biocompatible Gas Plasma Treatment Affects Secretion Profiles but Not Osteogenic Differentiation in Patient-Derived Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2022, 23, 2038.	1.8	7
10	New Approach against Chondrosoma Cellsâ€"Cold Plasma Treatment Inhibits Cell Motility and Metabolism, and Leads to Apoptosis. Biomedicines, 2022, 10, 688.	1.4	12
11	Periodic Exposure of Plasma-Activated Medium Alters Fibroblast Cellular Homoeostasis. International Journal of Molecular Sciences, 2022, 23, 3120.	1.8	4
12	Lack of Adverse Effects of Cold Physical Plasma-Treated Blood from Leukemia Patients: A Proof-of-Concept Study. Applied Sciences (Switzerland), 2022, 12, 128.	1.3	5
13	Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications. Applied Sciences (Switzerland), 2022, 12, 3800.	1.3	3
14	Consequences of nano and microplastic exposure in rodent models: the known and unknown. Particle and Fibre Toxicology, 2022, 19, 28.	2.8	47
15	Plasma medicine: The great prospects when physics meets medicine. Europhysics News, 2022, 53, 20-23.	0.1	3
16	Is Biomolecule Oxidation by Plasma-Derived Reactive Species Restricted to the Gas-Liquid Interphase?., 2022,,.		0
17	Immunostimulation in experimental gas plasma therapy for breast cancer. Trends in Biotechnology, 2022, 40, 1021-1024.	4.9	2
18	Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure. Molecules, 2022, 27, 4519.	1.7	1

#	Article	IF	Citations
19	Medical gas plasma promotes blood coagulation via platelet activation. Biomaterials, 2021, 278, 120433.	5.7	18
20	Effects of cold physical plasma on oral lichen planus: An in vitro study (<i>Effects of CAP on OLP</i>). Oral Diseases, 2021, 27, 1728-1737.	1.5	17
21	Hyperspectral Imaging of Wounds Reveals Augmented Tissue Oxygenation Following Cold Physical Plasma Treatment <i>iin Vivo</i> . IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 412-419.	2.7	23
22	Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation. Redox Biology, 2021, 38, 101809.	3.9	30
23	Zebrafish larvae as a toxicity model in plasma medicine. Plasma Processes and Polymers, 2021, 18, 2000188.	1.6	9
24	Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma. Sensors and Actuators B: Chemical, 2021, 326, 129007.	4.0	18
25	The Plasma-Induced Leukemia Cell Death is Dictated by the ROS Chemistry and the HO-1/CXCL8 Axis. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 398-411.	2.7	7
26	Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen. Scientific Reports, 2021, 11, 136.	1.6	23
27	A case of giant retroperitoneal lymphangioma and IgG4-positive fibrosis: Causality or coincidence?. SAGE Open Medical Case Reports, 2021, 9, 2050313X2110169.	0.2	1
28	Tailored Power of an RF Plasma Jet With Admixture of Nitrogen or Oxygen and Its Effects on Human Immune Cells. IEEE Transactions on Plasma Science, 2021, 49, 3336-3343.	0.6	6
29	Expression of canonical transient receptor potential channels in U-2 OS and MNNG-HOS osteosarcoma cell lines. Oncology Letters, 2021, 21, 307.	0.8	2
30	Large volume spark discharge and plasma jet-technology for generating plasma-oxidized saline targeting colon cancer <i>in vitro</i> and <i>in vivo</i> Journal of Applied Physics, 2021, 129, .	1.1	12
31	Hypochlorous acid selectively promotes toxicity and the expression of danger signals in human abdominal cancer cells. Oncology Reports, 2021, 45, .	1.2	8
32	The amino acid metabolism is essential for evading physical plasma-induced tumour cell death. British Journal of Cancer, 2021, 124, 1854-1863.	2.9	11
33	Combined Toxicity of Gas Plasma Treatment and Nanoparticles Exposure in Melanoma Cells In Vitro. Nanomaterials, 2021, 11, 806.	1.9	9
34	Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection. PLoS ONE, 2021, 16, e0247125.	1.1	10
35	Gas Plasma Technology Augments Ovalbumin Immunogenicity and OTâ€II T Cell Activation Conferring Tumor Protection in Mice. Advanced Science, 2021, 8, 2003395.	5.6	41
36	Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells. International Journal of Molecular Sciences, 2021, 22, 3790.	1.8	13

#	Article	IF	CITATIONS
37	Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers, 2021, 13, 1737.	1.7	70
38	Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins. Cancers, 2021, 13, 1770.	1.7	15
39	Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure. Frontiers in Microbiology, 2021, 12, 652481.	1.5	10
40	Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells. Cancers, 2021, 13, 2525.	1.7	6
41	ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination?. Vaccines, 2021, 9, 527.	2.1	12
42	Tumor cell metabolism correlates with resistance to gas plasma treatment: The evaluation of three dogmas. Free Radical Biology and Medicine, 2021, 167, 12-28.	1.3	33
43	Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry. Journal of Applied Physics, 2021, 129, .	1.1	26
44	Plasma Medicine Technologies. Applied Sciences (Switzerland), 2021, 11, 4584.	1.3	14
45	Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer?. Applied Sciences (Switzerland), 2021, 11, 4527.	1.3	8
46	Multimodal Imaging Techniques to Evaluate the Anticancer Effect of Cold Atmospheric Pressure Plasma. Cancers, 2021, 13, 2483.	1.7	8
47	In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells, 2021, 10, 1436.	1.8	8
48	The Anticancer Efficacy of Plasma-Oxidized Saline (POS) in the Ehrlich Ascites Carcinoma Model In Vitro and In Vivo. Biomedicines, 2021, 9, 932.	1.4	4
49	Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration. International Journal of Molecular Sciences, 2021, 22, 9199.	1.8	8
50	Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine. Molecules, 2021, 26, 5682.	1.7	16
51	Singletâ€Oxygenâ€Induced Phospholipase A ₂ Inhibition: A Major Role for Interfacial Tryptophan Dioxidation. Chemistry - A European Journal, 2021, 27, 14702-14710.	1.7	20
52	Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biology, 2021, 46, 102116.	3.9	65
53	Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo. Oncolmmunology, 2021, 10, 1859731.	2.1	34
54	Patient-Derived Human Basal and Cutaneous Squamous Cell Carcinoma Tissues Display Apoptosis and Immunomodulation following Gas Plasma Exposure with a Certified Argon Jet. International Journal of Molecular Sciences, 2021, 22, 11446.	1.8	9

#	Article	IF	CITATIONS
55	Repeated exposure of the oral mucosa over 12Âmonths with cold plasma is not carcinogenic in mice. Scientific Reports, 2021, 11, 20672.	1.6	21
56	Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	12
57	Mechanisms of Physical Plasma-Incuded Blood Coagualtion: What Happens at the Treatment-Interface?. , 2021, , .		O
58	ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	1.9	5
59	H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	14
60	Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants. Signal Transduction and Targeted Therapy, 2021, 6, 437.	7.1	3
61	Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	23
62	Physical Plasma Treatment of Eight Human Cancer Cell Lines Demarcates Upregulation of CD112 as a Common Immunomodulatory Response Element. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 343-349.	2.7	6
63	Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells In vitro. Cancers, 2020, 12, 122.	1.7	14
64	Gas Plasma-Conditioned Ringer's Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo. Cancers, 2020, 12, 123.	1.7	32
65	xCT (SLC7A11) expression confers intrinsic resistance to physical plasma treatment in tumor cells. Redox Biology, 2020, 30, 101423.	3.9	47
66	Inhibition of Angiogenesis by Treatment with Cold Atmospheric Plasma as a Promising Therapeutic Approach in Oncology. International Journal of Molecular Sciences, 2020, 21, 7098.	1.8	12
67	Gas plasma-oxidized liquids for cancer treatment: pre-clinical relevance, immuno-oncology, and clinical obstacles. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, , 1-1.	2.7	23
68	Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment. Frontiers in Physics, 2020, 8, .	1.0	14
69	The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function. Free Radical Biology and Medicine, 2020, 161, 32-49.	1.3	29
70	The progression of metastatic melanoma augments a pro-oxidative milieu locally but not systemically. Pathology Research and Practice, 2020, 216, 153218.	1.0	0
71	Cold Atmospheric Plasma Is a Potent Tool to Improve Chemotherapy in Melanoma In Vitro and In Vivo. Biomolecules, 2020, 10, 1011.	1.8	49
72	Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases, 2020, 15, 061008.	0.6	29

#	Article	lF	CITATIONS
73	Review of Innovative Physical Therapy Methods: Introduction to the Principles of Cold Physical Plasma. In Vivo, 2020, 34, 3103-3107.	0.6	13
74	Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells. Cancers, 2020, 12, 3575.	1.7	23
75	Plasma Treatment Limits Cutaneous Squamous Cell Carcinoma Development In Vitro and In Vivo. Cancers, 2020, 12, 1993.	1.7	25
76	Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. Applied Sciences (Switzerland), 2020, 10, 6898.	1.3	52
77	Emission of Ultraviolet Radiation from 220 to 280 NM by a Cold Physical Plasma Generating Device. Health Physics, 2020, 119, 153-159.	0.3	1
78	Plasma Treatment Limits Human Melanoma Spheroid Growth and Metastasis Independent of the Ambient Gas Composition. Cancers, 2020, 12, 2570.	1.7	19
79	Plasma-Treated Flammulina velutipes-Derived Extract Showed Anticancer Potential in Human Breast Cancer Cells. Applied Sciences (Switzerland), 2020, 10, 8395.	1.3	9
80	BK virusâ€induced nephritis and cystitis after matched unrelated donor stem cell transplantation: A case report. Clinical Case Reports (discontinued), 2020, 8, 2838-2841.	0.2	2
81	Characterization of Antimicrobial Effects of Plasma-Treated Water (PTW) Produced by Microwave-Induced Plasma (MidiPLexc) on Pseudomonas fluorescens Biofilms. Applied Sciences (Switzerland), 2020, 10, 3118.	1.3	15
82	Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers, 2020, 12, 1082.	1.7	23
83	The Application of a Low-temperature Physical Plasma Device Operating Under Atmospheric Pressure Leads to the Production of Toxic NO ₂ . Anticancer Research, 2020, 40, 2591-2599.	0.5	5
84	Plasma medical oncology: Immunological interpretation of head and neck squamous cell carcinoma. Plasma Processes and Polymers, 2020, 17, 1900258.	1.6	19
85	Gas Plasma Technology—An Asset to Healthcare During Viral Pandemics Such as the COVID-19 Crisis?. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 391-399.	2.7	28
86	Inhibition of murine melanoma tumor growth in vitro and in vivo using an argon-based plasma jet. Clinical Plasma Medicine, 2020, 19-20, 100102.	3.2	24
87	Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Advanced Science, 2020, 7, 1903438.	5.6	84
88	An Innovative Therapeutic Option for the Treatment of Skeletal Sarcomas: Elimination of Osteo- and Ewing's Sarcoma Cells Using Physical Gas Plasma. International Journal of Molecular Sciences, 2020, 21, 4460.	1.8	17
89	Determination of Immediate <i>vs.</i> Kinetic Growth Retardation in Physically Plasma-treated Cells by Experimental and Modelling Data. Anticancer Research, 2020, 40, 3743-3749.	0.5	8
90	Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells in Vitro. International Journal of Molecular Sciences, 2020, 21, 1379.	1.8	31

#	Article	IF	Citations
91	Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers, 2020, 12, 269.	1.7	131
92	Medical Gas Plasma Treatment in Head and Neck Cancerâ€"Challenges and Opportunities. Applied Sciences (Switzerland), 2020, 10, 1944.	1.3	11
93	Ex Vivo Exposure of Human Melanoma Tissue to Cold Physical Plasma Elicits Apoptosis and Modulates Inflammation. Applied Sciences (Switzerland), 2020, 10, 1971.	1.3	23
94	On a heavy path – determining cold plasma-derived short-lived species chemistry using isotopic labelling. RSC Advances, 2020, 10, 11598-11607.	1.7	31
95	Gas Plasma-Treated Prostate Cancer Cells Augment Myeloid Cell Activity and Cytotoxicity. Antioxidants, 2020, 9, 323.	2.2	17
96	Cold Atmospheric Plasma Treatment of Chondrosarcoma Cells Affects Proliferation and Cell Membrane Permeability. International Journal of Molecular Sciences, 2020, 21, 2291.	1.8	24
97	Combination Treatment with Cold Physical Plasma and Pulsed Electric Fields Augments ROS Production and Cytotoxicity in Lymphoma. Cancers, 2020, 12, 845.	1.7	28
98	Immunology in Plasma Cancer Treatment. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 209-222.	0.1	2
99	Oxidatively Modified Proteins: Cause and Control of Diseases. Applied Sciences (Switzerland), 2020, 10, 6419.	1.3	12
100	Biochemistry of Plasma in Cancer Therapy. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 91-142.	0.1	0
101	Plasma-Activated Solution in Cancer Treatment. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 143-168.	0.1	2
102	Immunotherapy and Immunosurveillance of Oral Cancers: Perspectives of Plasma Medicine and Mistletoe., 2020,, 355-362.		1
103	White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, 2019, 16, 1800033.	1.6	123
104	Non-thermal plasma-induced immunogenic cell death in cancer. Journal Physics D: Applied Physics, 2019, 52, 423001.	1.3	63
105	Plasma Medicine: A Field of Applied Redox Biology. In Vivo, 2019, 33, 1011-1026.	0.6	189
106	Plasma-Derived Reactive Species Shape a Differentiation Profile in Human Monocytes. Applied Sciences (Switzerland), 2019, 9, 2530.	1.3	22
107	Antimicrobial effects of microwaveâ€induced plasma torch (MiniMIP) treatment on <i>Candida albicans</i> biofilms. Microbial Biotechnology, 2019, 12, 1034-1048.	2.0	18
108	ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-29.	1.9	168

#	Article	IF	CITATIONS
109	Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis. Cancers, 2019, 11, 1237.	1.7	40
110	Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	1.9	44
111	Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	227
112	Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Scientific Reports, 2019, 9, 634.	1.6	107
113	Cold Argon Plasma as Adjuvant Tumour Therapy on Progressive Head and Neck Cancer: A Preclinical Study. Applied Sciences (Switzerland), 2019, 9, 2061.	1.3	29
114	RAW 264.7 Macrophage Polarization by Pancreatic Cancer Cells – A Model for Studying Tumour-promoting Macrophages. Anticancer Research, 2019, 39, 2871-2882.	0.5	33
115	Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics, 2019, 9, 1066-1084.	4.6	81
116	In Vitro Anticancer Efficacy of Six Different Clinically Approved Types of Liquids Exposed to Physical Plasma. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 588-596.	2.7	26
117	Activation of Murine Immune Cells upon Co-culture with Plasma-treated B16F10 Melanoma Cells. Applied Sciences (Switzerland), 2019, 9, 660.	1.3	30
118	Physical plasma-triggered ROS induces tumor cell death upon cleavage of HSP90 chaperone. Scientific Reports, 2019, 9, 4112.	1.6	37
119	Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation?. Clinical Plasma Medicine, 2019, 14, 100086.	3.2	17
120	Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. Clinical Plasma Medicine, 2019, 16, 100096.	3.2	18
121	Cold Physical Plasma Modulates p53 and Mitogen-Activated Protein Kinase Signaling in Keratinocytes. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	44
122	Physical Plasma Elicits Immunogenic Cancer Cell Death and Mitochondrial Singlet Oxygen. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 138-146.	2.7	51
123	The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation. Plasma Sources Science and Technology, 2018, 27, 034001.	1.3	27
124	High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environmental and Molecular Mutagenesis, 2018, 59, 268-277.	0.9	55
125	Treating cancer with cold physical plasma: On the way to evidenceâ€based medicine. Contributions To Plasma Physics, 2018, 58, 415-419.	0.5	49
126	Introduction to Plasma Medicine. , 2018, , 3-21.		6

#	Article	IF	CITATIONS
127	Safety Aspects of Non-Thermal Plasmas. , 2018, , 83-109.		6
128	Plasma Application for Hygienic Purposes in Medicine, Industry, and Biotechnology: Update 2017. , 2018, , 253-281.		3
129	Targeting malignant melanoma with physical plasmas. Clinical Plasma Medicine, 2018, 10, 1-8.	3.2	39
130	Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clinical Plasma Medicine, 2018, 9, 6-13.	3.2	236
131	A Comparison of Floating-Electrode DBD and kINPen Jet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells Under Standardized Conditions. Plasma Chemistry and Plasma Processing, 2018, 38, 1-12.	1.1	46
132	The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B. Molecular and Cellular Biology, 2018, 38, .	1.1	15
133	The Plasma Treatment Unit: An Attempt to Standardize Cold Plasma Treatment for Defined Biological Effects. Plasma Medicine, 2018, 8, 195-201.	0.2	6
134	Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biological Chemistry, 2018, 400, 19-38.	1.2	87
135	Letters. Journal of Wound Care, 2018, 27, 892-893.	0.5	1
136	Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death and Disease, 2018, 9, 1179.	2.7	88
137	Potentiating anti-tumor immunity with physical plasma. Clinical Plasma Medicine, 2018, 12, 17-22.	3.2	42
138	Cold Physical Plasma Selectively Elicits Apoptosis in Murine Pancreatic Cancer Cells <i>In Vitro</i> and <i>In Ovo</i> . Anticancer Research, 2018, 38, 5655-5663.	0.5	39
139	Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants. Antioxidants, 2018, 7, 151.	2.2	29
140	Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing. Antioxidants, 2018, 7, 146.	2.2	44
141	Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. Plasma, 2018, 1, 201-217.	0.7	17
142	Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound. Scientific Reports, 2018, 8, 7736.	1.6	67
143	Plasma-treated medium tunes the inflammatory profile in murine bone marrow-derived macrophages. Clinical Plasma Medicine, $2018, 11, 1-9$.	3.2	14
144	A myeloid and lymphoid infiltrate in murine pancreatic tumors exposed to plasma-treated medium. Clinical Plasma Medicine, 2018, 11, 10-17.	3.2	35

#	Article	IF	Citations
145	Physical plasma and leukocytes – immune or reactive?. Biological Chemistry, 2018, 400, 63-75.	1.2	35
146	A Neutrophil Proteomic Signature in Surgical Trauma Wounds. International Journal of Molecular Sciences, 2018, 19, 761.	1.8	17
147	Perspectives in Immunology of Wound Healing. , 2018, , 401-408.		0
148	Cancer Immunology. , 2018, , 409-419.		0
149	Perspectives in General Surgery. , 2018, , 347-354.		0
150	Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction. Scientific Reports, 2018, 8, 12734.	1.6	38
151	Nonthermal Plasma Jet Treatment Negatively Affects the Viability and Structure of Candida albicans SC5314 Biofilms. Applied and Environmental Microbiology, 2018, 84, .	1.4	27
152	Cold Physical Plasma-Treated Buffered Saline Solution as Effective Agent Against Pancreatic Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 824-831.	0.9	26
153	Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes. Biophysical Journal, 2017, 112, 2397-2407.	0.2	40
154	Platelets are key in cold physical plasma-facilitated blood coagulation in mice. Clinical Plasma Medicine, 2017, 7-8, 58-65.	3.2	33
155	Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Scientific Reports, 2017, 7, 8319.	1.6	114
156	Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Scientific Reports, 2017, 7, 2791.	1.6	106
157	Redox regulation of leukocyte-derived microparticle release and protein content in response to cold physical plasma-derived oxidants. Clinical Plasma Medicine, 2017, 7-8, 24-35.	3.2	21
158	Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells. Journal of Visualized Experiments, 2017, , .	0.2	53
159	Pro-oxidant tumor therapy in murine melanoma and pancreatic cancer. Free Radical Biology and Medicine, 2017, 108, S76.	1.3	2
160	A cold plasma jet accelerates wound healing in a murine model of fullâ€thickness skin wounds. Experimental Dermatology, 2017, 26, 156-162.	1.4	181
161	Distinct cytokine and chemokine patterns in chronic diabetic ulcers and acute wounds. Experimental Dermatology, 2017, 26, 145-147.	1.4	23
162	Environmental Control of an Argon Plasma Effluent and Its Role in THP-1 Monocyte Function. IEEE Transactions on Plasma Science, 2017, 45, 3336-3341.	0.6	10

#	Article	IF	CITATIONS
163	Cold Atmospheric Plasma in the Treatment of Osteosarcoma. International Journal of Molecular Sciences, 2017, 18, 2004.	1.8	44
164	One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet. International Journal of Molecular Sciences, 2017, 18, 868.	1.8	86
165	Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	55
166	Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-23.	1.9	54
167	Oxidants and Redox Signaling: Perspectives in Cancer Therapy, Inflammation, and Plasma Medicine. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-2.	1.9	8
168	Cold Atmospheric Plasma (CAP) and CAP-Stimulated Cell Culture Media Suppress Ovarian Cancer Cell Growth â€" A Putative Treatment Option in Ovarian Cancer Therapy. Anticancer Research, 2017, 37, 6739-6744.	0.5	46
169	Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	57
170	Periodic Exposure of Keratinocytes to Cold Physical Plasma: An <i>In Vitro</i> Model for Redox-Related Diseases of the Skin. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	54
171	Neutrophil extracellular trap formation is elicited in response to cold physical plasma. Journal of Leukocyte Biology, 2016, 100, 791-799.	1.5	52
172	Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Indikation., 2016,, 137-155.		1
173	Cold physical plasma selects for specific T helper cell subsets with distinct cells surface markers in a caspaseâ€dependent and NFâ€PBâ€independent manner. Plasma Processes and Polymers, 2016, 13, 1144-1150.	1.6	33
174	Redoxâ€regulation of activator protein 1 family members in blood cancer cell lines exposed to cold physical plasmaâ€treated medium. Plasma Processes and Polymers, 2016, 13, 1179-1188.	1.6	45
175	The plasma jet kINPen – A powerful tool for wound healing. Clinical Plasma Medicine, 2016, 4, 19-28.	3.2	303
176	Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 798-799, 48-54.	0.9	126
177	Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model. PLoS ONE, 2016, 11, e0160667.	1.1	91
178	Wissenschaftliche Grundlagen, Stand und Perspektiven der Plasmamedizin., 2016,, 17-32.		1
179	Synergistic Inhibition of Tumor Cell Proliferation by Cold Plasma and Gemcitabine. Plasma Processes and Polymers, 2015, 12, 1377-1382.	1.6	23
180	Cold Physical Plasmas in the Field of Hygieneâ€"Relevance, Significance, and Future Applications. Plasma Processes and Polymers, 2015, 12, 1410-1422.	1.6	45

#	Article	IF	Citations
181	Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clinical Plasma Medicine, 2015, 3, 24-31.	3.2	60
182	Nitrogen Shielding of an Argon Plasma Jet and Its Effects on Human Immune Cells. IEEE Transactions on Plasma Science, 2015, 43, 776-781.	0.6	61
183	Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Research, 2014, 48, 542-549.	1.5	201
184	Efficacy of Different Carrier Gases for Barrier Discharge Plasma Generation Compared to Chlorhexidine on the Survival of <i>Pseudomonas aeruginosa</i> Embedded in Biofilm in vitro. Skin Pharmacology and Physiology, 2014, 27, 148-157.	1.1	22
185	Human Mononuclear Cell Survival and Proliferation is Modulated by Cold Atmospheric Plasma Jet. Plasma Processes and Polymers, 2013, 10, 706-713.	1.6	76
186	Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology, 2013, 218, 1248-1255.	0.8	90
187	Maintaining health by balancing microbial exposure and prevention of infection: the hygiene hypothesis versus the hypothesis of early immune challenge. Journal of Hospital Infection, 2013, 83, S29-S34.	1.4	54
188	Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radical Research, 2013, 47, 577-592.	1.5	81
189	Nonthermal Plasma Increases Expression of Wound Healing Related Genes in a Keratinocyte Cell Line. Plasma Medicine, 2013, 3, 125-136.	0.2	53
190	Differential Viability of Eight Human Blood Mononuclear Cell Subpopulations After Plasma Treatment. Plasma Medicine, 2013, 3, 1-13.	0.2	48
191	Proteomic Tools to Characterize Non-Thermal Plasma Effects in Eukaryotic Cells. Plasma Medicine, 2013, 3, 81-95.	0.2	16
192	Cold Physical Plasma Treatment Alters Redox Balance in Human Immune Cells. Plasma Medicine, 2013, 3, 267-278.	0.2	50
193	Viability of Human Blood Leukocytes Compared with Their Respective Cell Lines after Plasma Treatment. Plasma Medicine, 2013, 3, 71-80.	0.2	55
194	Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus. GMS Krankenhaushygiene InterdisziplinA# 2012, 7, Doc02.	0.3	18