List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting LncRNA-Disease Association Based on Generative Adversarial Network. Current Gene Therapy, 2022, 22, 144-151.	2.0	9
2	<i>pDriver</i> : a novel method for unravelling personalized coding and miRNA cancer drivers. Bioinformatics, 2021, 37, 3285-3292.	4.1	8
3	Uncovering the roles of microRNAs/IncRNAs in characterising breast cancer subtypes and prognosis. BMC Bioinformatics, 2021, 22, 300.	2.6	6
4	A Unified View of Causal and Non-causal Feature Selection. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-46.	3.5	39
5	Causality-based Feature Selection. ACM Computing Surveys, 2021, 53, 1-36.	23.0	88
6	Evidence Weighted Tree Ensembles for Text Classification. , 2020, , .		0
7	Privacy preserving serial publication of transactional data. Information Systems, 2019, 82, 53-70.	3.6	10
8	Data-driven discovery of causal interactions. International Journal of Data Science and Analytics, 2019, 8, 285-297.	4.1	2
9	Multi-label relational classification via node and label correlation. Neurocomputing, 2018, 292, 72-81.	5.9	8
10	miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 2018, 19, 514.	2.6	59
11	Guest Editorial: Special Issue on Causal Discovery 2017. International Journal of Data Science and Analytics, 2018, 6, 1-2.	4.1	2
12	ParallelPC: An R Package for Efficient Causal Exploration in Genomic Data. Lecture Notes in Computer Science, 2018, , 207-218.	1.3	4
13	Which Type of Classifier to Use for Networked Data, Connectivity Based or Feature Based?. Lecture Notes in Computer Science, 2018, , 364-380.	1.3	0
14	SensorTree: Bursty Propagation Trees as Sensors for Protest Event Detection. Lecture Notes in Computer Science, 2018, , 281-296.	1.3	5
15	LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics, 2018, 34, 4232-4240.	4.1	73
16	Mining Markov Blankets Without Causal Sufficiency. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 6333-6347.	11.3	14
17	Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 2018, 161, 134-146.	7.1	115
18	Collective behavior learning by differentiating personal preference from peer influence. Knowledge-Based Systems, 2018, 159, 233-243.	7.1	8

#	Article	IF	CITATIONS
19	Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Frontiers in Cellular and Infection Microbiology, 2018, 8, 164.	3.9	15
20	A data-driven method to detect adverse drug events from prescription data. Journal of Biomedical Informatics, 2018, 85, 10-20.	4.3	9
21	Information Propagation Trees forÂProtest Event Prediction. Lecture Notes in Computer Science, 2018, , 777-789.	1.3	5
22	Guest editorial: special issue on causal discovery. International Journal of Data Science and Analytics, 2017, 3, 79-80.	4.1	0
23	Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics, 2017, 18, 243.	2.6	20
24	CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics, 2017, 33, 3131-3133.	4.1	196
25	Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics, 2017, 33, 2372-2378.	4.1	25
26	Identifying microRNA targets in epithelial-mesenchymal transition using joint-intervention causal inference. , 2017, , .		2
27	Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data. Health Information Science and Systems, 2017, 5, 5.	5.2	4
28	Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics, 2017, 18, 44.	2.6	25
29	Causal Decision Trees. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 257-271.	5.7	40
30	Discrimination detection by causal effect estimation. , 2017, , .		8
31	Utility Aware Clustering for Publishing Transactional Data. Lecture Notes in Computer Science, 2017, , 481-494.	1.3	6
32	Carbon: Forecasting Civil Unrest Events by Monitoring News and Social Media. Lecture Notes in Computer Science, 2017, , 859-865.	1.3	7
33	Evaluating and Improving SIP Non-INVITE Transaction to Alleviate the Losing Race Problem. Lecture Notes in Computer Science, 2017, , 57-77.	1.3	0
34	Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles. PLoS ONE, 2016, 11, e0152860.	2.5	15
35	An Android Communication App Forensic Taxonomy. Journal of Forensic Sciences, 2016, 61, 1337-1350.	1.6	43
36	Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics, 2016, 17, 7.	2.8	25

#	Article	IF	CITATIONS
37	Mining combined causes in large data sets. Knowledge-Based Systems, 2016, 92, 104-111.	7.1	14
38	An Android Social App Forensics Adversary Model. , 2016, , .		21
39	Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular BioSystems, 2016, 12, 454-463.	2.9	9
40	Ensemble Methods for MiRNA Target Prediction from Expression Data. PLoS ONE, 2015, 10, e0131627.	2.5	35
41	miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships. PLoS ONE, 2015, 10, e0145386.	2.5	33
42	A Study of Ten Popular Android Mobile VoIP Applications: Are the Communications Encrypted?. , 2014, , .		17
43	Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network. Molecular BioSystems, 2014, 10, 2074-2081.	2.9	296
44	Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 2014, 30, 3070-3077.	4.1	22
45	Discovering Collective Group Relationships. Lecture Notes in Computer Science, 2014, , 110-121.	1.3	2
46	Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 2013, 14, 92.	2.6	35
47	Mining Causal Association Rules. , 2013, , .		32
48	Modelling of money laundering and terrorism financing typologies. Journal of Money Laundering Control, 2012, 15, 316-335.	1.1	23
49	Discovery of Causal Rules Using Partial Association. , 2012, , .		23
50	Spectral Representation of Protein Sequences. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1335-1339.	0.4	2
51	Uncovering SIP Vulnerabilities to DoS Attacks Using Coloured Petri Nets. , 2011, , .		7
52	Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 2010, 26, 3105-3111.	4.1	91
53	A simple yet effective data integration approach to tree-based microarray data classification. , 2010, 2010, 1503-6.		1
54	Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 2009, 10, 408.	2.6	72

#	Article	IF	CITATIONS
55	Modelling and Analysis of the INVITE Transaction of the Session Initiation Protocol Using Coloured Petri Nets. Lecture Notes in Computer Science, 2008, , 132-151.	1.3	9
56	Symbolic Language Representations for Parametric Verification of the Revised Capability Exchange Signalling Protocol. , 2007, , .		2
57	Verification of the Capability Exchange Signalling protocol. International Journal on Software Tools for Technology Transfer, 2007, 9, 305-326.	1.9	7
58	Reducing Parametric Automata: A Multimedia Protocol Service Case Study. Lecture Notes in Computer Science, 2004, , 483-486.	1.3	1
59	Tackling the Infinite State Space of a Multimedia Control Protocol Service Specification. Lecture Notes in Computer Science, 2002, , 273-293.	1.3	9
60	3.2.4 Modelling and Analysis of Internet Multimedia Protocols. Incose International Symposium, 2001, 11, 258-265.	0.6	3
61	FUZZY BAYESIAN NETWORKS — A GENERAL FORMALISM FOR REPRESENTATION, INFERENCE AND LEARNING WITH HYBRID BAYESIAN NETWORKS. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14, 941-962.	1.2	31
62	Estimating the parameters of mixed Bayesian networks from incomplete data. , 1999, , .		0
63	Obtaining the service language for H.245's multimedia capability exchange signalling protocol: the final step. , 0, , .		2