
Chaiwat Engtrakul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of PL Quenching during Single-Walled Carbon Nanotube Rebundling and Diameter-Dependent Surfactant Interactionsâ€. Journal of Physical Chemistry B, 2006, 110, 25339-25346.	2.6	125
2	Near-perfect conduction through a ferrocene-based molecular wire. Physical Review B, 2005, 71, .	3.2	121
3	n-Type Transparent Conducting Films of Small Molecule and Polymer Amine Doped Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 3714-3723.	14.6	109
4	Hole Doping in Al-Containing Nickel Oxide Materials To Improve Electrochromic Performance. ACS Applied Materials & Interfaces, 2013, 5, 301-309.	8.0	109
5	Arenethiols Form Ordered and Incommensurate Self-Assembled Monolayers on Au(111) Surfaces. Journal of Physical Chemistry B, 2000, 104, 9059-9062.	2.6	108
6	Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catalysis Today, 2016, 269, 175-181.	4.4	105
7	Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells. Journal of Power Sources, 2011, 196, 7465-7469.	7.8	102
8	Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	95
9	Ferrocene-Based Nanoelectronics:  2,5-Diethynylpyridine as a Reversible Switching Element. Nano Letters, 2001, 1, 541-549.	9.1	83
10	In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. Journal of Materials Chemistry, 2012, 22, 16817.	6.7	77
11	Single-wall carbon nanotube coating on a pyroelectric detector. Applied Optics, 2005, 44, 483.	2.1	75
12	Origin of Electrochromism in High-Performing Nanocomposite Nickel Oxide. ACS Applied Materials & Interfaces, 2013, 5, 3643-3649.	8.0	73
13	Protonation of Carbon Single-Walled Nanotubes Studied Using13C and1Hâ^'13C Cross Polarization Nuclear Magnetic Resonance and Raman Spectroscopies. Journal of the American Chemical Society, 2005, 127, 17548-17555.	13.7	69
14	Synthesis and Characterization of Boron-Doped Single-Wall Carbon Nanotubes Produced by the Laser Vaporization Technique. Chemistry of Materials, 2006, 18, 2558-2566.	6.7	69
15	Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212, 237-241.	2.9	62
16	Hydroxide based Benzyltrimethylammonium Degradation: Quantification of Rates and Degradation Technique Development. Journal of the Electrochemical Society, 2015, 162, F366-F372.	2.9	62
17	Lithiation of silica through partial reduction. Applied Physics Letters, 2012, 100, .	3.3	57
18	Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts. Applied Surface Science, 2012, 258, 5212-5221.	6.1	52

CHAIWAT ENGTRAKUL

#	Article	IF	CITATIONS
19	Soiling and cleaning: Initial observations from 5-year photovoltaic glass coating durability study. Solar Energy Materials and Solar Cells, 2018, 185, 375-384.	6.2	51
20	Nitrogen-doped nickel oxide thin films for enhanced electrochromic applications. Thin Solid Films, 2013, 527, 26-30.	1.8	48
21	Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 11139-11149.	3.1	45
22	Intrinsic and Extrinsic Effects in the Temperature-Dependent Photoluminescence of Semiconducting Carbon Nanotubes. Physical Review Letters, 2006, 96, 106805.	7.8	44
23	Protonation Effects on the Branching Ratio in Photoexcited Single-Walled Carbon Nanotube Dispersions. Nano Letters, 2008, 8, 1047-1054.	9.1	42
24	Ferrocene-Based Nanoelectronics: Regioselective Syntheses and Electrochemical Characterization of α-Monothiol and α,ï‰-Dithiol, Phenylethynyl-Conjugated, 2,5-Diethynylpyridyl- and Pyridinium-Linked Diferrocene Frameworks Having an End-to-End Distance of â^¼4 nm. Organometallics, 2008, 27, 927-937.	2.3	41
25	The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Solar Energy Materials and Solar Cells, 2014, 121, 163-170.	6.2	41
26	Effects of Surfactant and Boron Doping on the BWF Feature in the Raman Spectrum of Single-Wall Carbon Nanotube Aqueous Dispersionsâ€. Journal of Physical Chemistry B, 2006, 110, 25551-25558.	2.6	40
27	Evaluation of Soiling and Potential Mitigation Approaches on Photovoltaic Glass. IEEE Journal of Photovoltaics, 2019, 9, 233-239.	2.5	38
28	Extrinsic and Intrinsic Effects on the Excited-State Kinetics of Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 300-306.	9.1	36
29	Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications. Thin Solid Films, 2006, 501, 216-220.	1.8	34
30	Low-temperature ozone exposure technique to modulate the stoichiometry of WO _{<i>x</i>} nanorods and optimize the electrochromic performance. Nanotechnology, 2012, 23, 255601.	2.6	33
31	Enhancing the Electrocatalysis of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ by Introducing Lithium Deficiency for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 10496-10502.	8.0	33
32	Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-Modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26744-26755.	3.1	32
33	Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition. ACS Applied Materials & Interfaces, 2021, 13, 11930-11939.	8.0	31
34	Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Solar Energy Materials and Solar Cells, 2015, 132, 6-14.	6.2	30
35	Chemistry of Electrolyte Reduction on Lithium Silicide. Journal of Physical Chemistry C, 2019, 123, 13219-13224.	3.1	29
36	Solid-State ¹³ C NMR Assignment of Carbon Resonances on Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 9956-9957.	13.7	28

CHAIWAT ENGTRAKUL

#	Article	IF	CITATIONS
37	Synthesis of a Clathrochelate Complex with an Appended Pyridine and Its Coordination to a Cobaloxime Complex. Inorganic Chemistry, 2000, 39, 5161-5163.	4.0	26
38	Ultrafast photoresponse of metallic and semiconducting single-wall carbon nanotubes. Physical Review B, 2005, 71, .	3.2	26
39	Self-Assembly of Linear Arrays of Semiconductor Nanoparticles on Carbon Single-Walled Nanotubesâ€. Journal of Physical Chemistry B, 2006, 110, 25153-25157.	2.6	26
40	Ultrasonic spray deposition of high performance WO3 films using template-assisted sol–gel chemistry. Electrochemistry Communications, 2012, 25, 62-65.	4.7	22
41	Temperature-Dependent Excitonic Decay and Multiple States in Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3601-3606.	3.1	21
42	Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Solar Energy Materials and Solar Cells, 2014, 126, 206-212.	6.2	20
43	Near-infrared Fourier transform photoluminescence spectrometer with tunable excitation for the study of single-walled carbon nanotubes. Review of Scientific Instruments, 2006, 77, 053104.	1.3	19
44	Graphene as an Efficient Interfacial Layer for Electrochromic Devices. ACS Applied Materials & Interfaces, 2015, 7, 11330-11336.	8.0	19
45	The Abrasion of Photovoltaic Glass: A Comparison of the Effects of Natural and Artificial Aging. IEEE Journal of Photovoltaics, 2020, 10, 173-180.	2.5	19
46	Unraveling the ¹³ C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure. Journal of the American Chemical Society, 2012, 134, 4850-4856.	13.7	18
47	Method To Determine MgO and MgOHCl in Chloride Molten Salts. Analytical Chemistry, 2020, 92, 3598-3604.	6.5	15
48	Catalytic Hot-Gas Filtration with a Supported Heteropolyacid Catalyst for Preconditioning Biomass Pyrolysis Vapors. ACS Sustainable Chemistry and Engineering, 2019, 7, 14941-14952.	6.7	12
49	Surface-Engineered Inorganic Nanoporous Membranes for Vapor and Pervaporative Separations of Water–Ethanol Mixtures. Membranes, 2018, 8, 95.	3.0	11
50	Novel organometallic fullerene complexes for vehicular hydrogen storage. Physica Status Solidi (B): Basic Research, 2007, 244, 4319-4322.	1.5	9
51	Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications. Separation Science and Technology, 2017, 52, 528-543.	2.5	8
52	Manipulation of Hydrogen Binding Energy and Desorption Kinetics by Boron Doping of High Surface Area Carbon. Journal of Physical Chemistry C, 2012, 116, 26138-26143.	3.1	7
53	Solidâ€State Conversion Reaction to Enhance Charge Transfer in Electrochromic Materials. Advanced Materials Interfaces, 2015, 2, 1400523.	3.7	7
54	Optimization of Biomass Pyrolysis Vapor Upgrading Using a Laminar Entrained-Flow Reactor System. Energy & Fuels, 2020, 34, 6030-6040.	5.1	6

CHAIWAT ENGTRAKUL

#	Article	IF	CITATIONS
55	Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass. Energy & Fuels, 2016, 30, 8343-8348.	5.1	5
56	Atomic Layer Deposition of Platinum onto Functionalized Aligned MWNT Arrays for Fuel Cell Application. ECS Transactions, 2010, 33, 89-96.	0.5	3
57	Baseline BTMA Degradation as a Standard for Cationic Degradation in AEMFCs. ECS Transactions, 2014, 64, 1201-1209.	0.5	3
58	Reactions and reversible hydrogenation of single-walled carbon nanotube anions. Journal of Materials Research, 2012, 27, 2806-2811.	2.6	2
59	Optical Microscopy Study of Soiling on Photovoltaic Glass: Evaluation of Mitigation Strategies. , 2018, , .		2
60	The Influence of Surfaces and Deposition Processes on Pt Structure and Properties. ECS Transactions, 2010, 33, 221-228.	0.5	1
61	Characterization of Cathode/Electrolyte Interfacial Processes By Scanning Electrochemical Microscopy. ECS Meeting Abstracts, 2020, MA2020-02, 159-159.	0.0	1
62	Effect of removal and change of surfactant upon the photoluminescence of carbon nanotubes. , 2005, 5929, 169.		0
63	Investigation of the electronic structure of carbon single wall nanotube hybrid nanostructures. , 2005, 5929, 123.		0
64	Hydrogen Storage in Novel Carbon-Based Nanostructured Materials. Materials Research Society Symposia Proceedings, 2006, 927, 1.	0.1	0
65	Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage. Materials Research Society Symposia Proceedings, 2007, 1041, 1.	0.1	0
66	Mechanism of Hydrogen Storage on Reduced Carbon Single-Walled Nanotubes. Materials Research Society Symposia Proceedings, 2008, 1098, 1.	0.1	0
67	High-Capacity and High-Rate Anodes for Li-Ion Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0