
Gang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593627/publications.pdf Version: 2024-02-01

CANC CHEN

#	Article	IF	CITATIONS
1	Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of –1 ribosomal frameshifting. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12706-12711.	3.3	126
2	<scp>RNA</scp> triplexes: from structural principles to biological and biotech applications. Wiley Interdisciplinary Reviews RNA, 2015, 6, 111-128.	3.2	93
3	Ligandâ€Promoted <i>ortho</i> H Amination with Pd Catalysts. Angewandte Chemie - International Edition, 2015, 54, 2497-2500.	7.2	91
4	Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Nucleic Acids Research, 2014, 42, 4008-4018.	6.5	75
5	Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. Rna, 2007, 13, 2175-2188.	1.6	74
6	Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides. Nucleic Acids Research, 2013, 41, 6664-6673.	6.5	56
7	Selective Lighting Up of Epiberberine Alkaloid Fluorescence by Fluorophore-Switching Aptamer and Stoichiometric Targeting of Human Telomeric DNA G-Quadruplex Multimer. Analytical Chemistry, 2015, 87, 730-737.	3.2	51
8	Theranostic Prodrug Vesicles for Imaging Guided Codelivery of Camptothecin and siRNA in Synergetic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 23536-23543.	4.0	46
9	Intracellular Delivery of Antisense Peptide Nucleic Acid by Fluorescent Mesoporous Silica Nanoparticles. Bioconjugate Chemistry, 2014, 25, 1412-1420.	1.8	45
10	A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjugate Chemistry, 2019, 30, 931-943.	1.8	44
11	The effect of agitation states on hydrothermal synthesis of Bi2S3 nanorods. Journal of Crystal Growth, 2001, 233, 799-802.	0.7	39
12	A Simple Route to Synthesize MInS2(M = Cu, Ag) Nanorods from Single-Molecule Precursors. Chemistry Letters, 2001, 30, 236-237.	0.7	38
13	Syntheses, Structures and Magnetic Behaviors of Di- and Trinuclear Pivalate Complexes Containing Both Cobalt(II) and Lanthanide(III) Ions. Inorganic Chemistry, 2000, 39, 4165-4168.	1.9	37
14	Palladium-Catalyzed Direct C–H Trifluoroethylation of Aromatic Amides. Organic Letters, 2017, 19, 4223-4226.	2.4	37
15	Solution Structure of an RNA Internal Loop with Three Consecutive Sheared GA Pairsâ€,‡. Biochemistry, 2005, 44, 2845-2856.	1.2	36
16	Noncanonical registers and base pairs in human 5′ splice-site selection. Nucleic Acids Research, 2016, 44, 3908-3921.	6.5	35
17	Factors Affecting Thermodynamic Stabilities of RNA 3 × 3 Internal Loops. Biochemistry, 2004, 43, 12865-12876.	1.2	33
18	Solvothermal syntheses of β-Ag2Se crystals with novel morphologies. Journal of Solid State Chemistry, 2003, 172, 17-21.	1.4	32

GANG CHEN

#	Article	IF	CITATIONS
19	Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine–purine inversion site of an RNA duplex. Nucleic Acids Research, 2016, 44, gkw778.	6.5	32
20	Intra-locked C-quadruplex structures formed by irregular DNA C-rich motifs. Nucleic Acids Research, 2020, 48, 3315-3327.	6.5	29
21	The NMR Structure of an Internal Loop from 23S Ribosomal RNA Differs from Its Structure in Crystals of 50S Ribosomal Subunitsâ€,‡. Biochemistry, 2006, 45, 11776-11789.	1.2	28
22	Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A–U pairs in dsRNAs. Nucleic Acids Research, 2018, 46, 7506-7521.	6.5	28
23	An Alternating Sheared AA Pair and Elements of Stability for a Single Sheared Purine-Purine Pair Flanked by Sheared GA Pairs in RNA,. Biochemistry, 2006, 45, 6889-6903.	1.2	27
24	Consecutive GA Pairs Stabilize Medium-Size RNA Internal Loopsâ€. Biochemistry, 2006, 45, 4025-4043.	1.2	27
25	Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for â^'1 ribosomal frameshifting stimulation. Scientific Reports, 2016, 6, 39549.	1.6	27
26	Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry, 2018, 57, 149-159.	1.2	27
27	A CA ⁺ Pair Adjacent to a Sheared GA or AA Pair Stabilizes Size-Symmetric RNA Internal Loops. Biochemistry, 2009, 48, 5738-5752.	1.2	26
28	RNA Reactions One Molecule at a Time. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003624-a003624.	2.3	23
29	Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced â~1 Ribosomal Frameshifting. Journal of the American Chemical Society, 2018, 140, 8172-8184.	6.6	22
30	lridium(III)â€Catalyzed Selective and Mild Câ€H Amidation of Cyclic <i>N</i> â€Sulfonyl Ketimines with Organic Azides. Advanced Synthesis and Catalysis, 2018, 360, 416-421.	2.1	21
31	Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Analytical Chemistry, 2019, 91, 5331-5338.	3.2	20
32	General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase. Biochemistry, 2019, 58, 1319-1331.	1.2	19
33	Stacking Effects on Local Structure in RNA:Â Changes in the Structure of Tandem GA Pairs when Flanking GC Pairs Are Replaced by isoGâ°isoC Pairsâ€. Journal of Physical Chemistry B, 2007, 111, 6718-6727.	1.2	17
34	Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor. Biochemistry, 2019, 58, 3444-3453.	1.2	16
35	A Disease-Causing Intronic Point Mutation C19G Alters Tau Exon 10 Splicing via RNA Secondary Structure Rearrangement. Biochemistry, 2019, 58, 1565-1578.	1.2	16
36	Poly[lead(II)-μ-4,4-bipyridine-N:N′-di-μ-bromo]. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, e552-e553.	0.4	15

GANG CHEN

#	Article	IF	CITATIONS
37	RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules, 2019, 24, 3020.	1.7	14
38	Mechanisms and applications of peptide nucleic acids selectively binding to doubleâ€stranded RNA. Biopolymers, 2022, 113, e23476.	1.2	14
39	Targeting RNA editing of antizyme inhibitor 1: A potential oligonucleotide-based antisense therapy for cancer. Molecular Therapy, 2021, 29, 3258-3273.	3.7	13
40	A Uâ‹U Pairâ€toâ€Uâ‹C Pair Mutationâ€Induced RNA Native Structure Destabilisation and Stretchingâ€Forceâ€Induced RNA Misfolding. ChemPlusChem, 2015, 80, 1267-1278.	1.3	12
41	Incorporating C-C Pair-Recognizing Guanidinium into PNAs for Sequence and Structure Specific Recognition of dsRNAs over dsDNAs and ssRNAs. Biochemistry, 2019, 58, 3777-3788.	1.2	12
42	Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. Journal of Visualized Experiments, 2017, , .	0.2	10
43	TMV mutants with poly(A) tracts of different lengths demonstrate structural variations in 3′UTR affecting viral RNAs accumulation and symptom expression. Scientific Reports, 2015, 5, 18412.	1.6	9
44	Two mixed-metal carboxylate–base adducts. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1198-1200.	0.4	8
45	Bis(2,2-bipyridine-N,N′)tetra-μ-chloro-tetracopper(I). Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 349-351.	0.4	8
46	Recognition of RNA Sequence and Structure by Duplex and Triplex Formation: Targeting miRNA and Pre-miRNA. RNA Technologies, 2016, , 299-317.	0.2	8
47	Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry, 2020, 59, 4429-4438.	1.2	6
48	Duplexes Formed by G ₄ C ₂ Repeats Contain Alternate Slow- and Fast-Flipping G·G Base Pairs. Biochemistry, 2021, 60, 1097-1107.	1.2	5
49	How RNA catalyzes cyclization. Nature Chemical Biology, 2015, 11, 830-831.	3.9	3