Shun-ichiro Kawabata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593515/publications.pdf

Version: 2024-02-01

84 papers

4,589 citations

39 h-index 98622 67 g-index

89 all docs 89 docs citations

89 times ranked 3985 citing authors

#	Article	IF	CITATIONS
1	Proteolytic cascades and their involvement in invertebrate immunity. Trends in Biochemical Sciences, 2010, 35, 575-583.	3.7	308
2	Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. FEBS Journal, 1988, 172, 17-25.	0.2	235
3	Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature, 2003, 425, 535-539.	13.7	234
4	Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nature Communications, 2014, 5, 4713.	5.8	181
5	Functional Conversion of Hemocyanin to Phenoloxidase by Horseshoe Crab Antimicrobial Peptides. Journal of Biological Chemistry, 2001, 276, 27166-27170.	1.6	176
6	A Novel Big Defensin Identified in Horseshoe Crab Hemocytes: Isolation, Amino Acid Sequence, and Antibacterial Activity1. Journal of Biochemistry, 1995, 117, 1131-1137.	0.9	169
7	Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO Journal, 1999, 18, 2313-2322.	3.5	161
8	A Link between Blood Coagulation and Prophenol Oxidase Activation in Arthropod Host Defense. Journal of Biological Chemistry, 2000, 275, 29264-29267.	1.6	147
9	Chitin-binding Proteins in Invertebrates and Plants Comprise a Common Chitin-binding Structural Motif. Journal of Biological Chemistry, 2000, 275, 17929-17932.	1.6	131
10	In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-oxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. FEBS Journal, 1998, 254, 50-57.	0.2	128
11	Tachycitin, a Small Granular Component in Horseshoe Crab Hemocytes, Is an Antimicrobial Protein with Chitin-Binding Activity. Journal of Biochemistry, 1996, 120, 1253-1260.	0.9	126
12	Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology, 2006, 211, 237-249.	0.8	108
13	Molecular cloning of cDNA for pro-phenol-oxidase-activating factor I, a serine protease is induced by lipopolysaccharide or 1,3-beta-glucan in coleopteran insect, Holotrichia diomphalia larvae. FEBS Journal, 1998, 257, 615-621.	0.2	106
14	Horseshoe Crab Hemocyte-derived Antimicrobial Polypeptides, Tachystatins, with Sequence Similarity to Spider Neurotoxins. Journal of Biological Chemistry, 1999, 274, 26172-26178.	1.6	104
15	A Newly Identified Horseshoe Crab Lectin with Binding Specificity to O-antigen of Bacterial Lipopolysaccharides. Journal of Biological Chemistry, 1997, 272, 30703-30708.	1.6	95
16	Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Frontiers in Bioscience - Landmark, 1998, 3, d973-984.	3.0	89
17	A Novel Type of limulus Lectin-L6. PURIFICATION, PRIMARY STRUCTURE, AND ANTIBACTERIAL ACTIVITY. Journal of Biological Chemistry, 1995, 270, 14493-14499.	1.6	83
18	A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 953-958.	3.3	83

#	Article	IF	CITATIONS
19	Molecular Cloning of Limulusalpha2-Macroglobulin. FEBS Journal, 1996, 242, 822-831.	0.2	75
20	Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Letters, 1996, 398, 146-150.	1.3	71
21	Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 414-421.	1.1	69
22	Purification, Characterization, and cDNA Cloning of a 27-kDa Lectin (L10) from Horseshoe Crab Hemocytes. Journal of Biological Chemistry, 1995, 270, 31008-31015.	1.6	68
23	Enzymatic Properties of Staphylothrombin, an Active Molecular Complex Formed between Staphylocoagulase and Human Prothrombin12. Journal of Biochemistry, 1985, 98, 1603-1614.	0.9	66
24	Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 527-534.	1.1	64
25	Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathogens, 2015, 11, e1005244.	2.1	63
26	A Newly Identified Horseshoe Crab Lectin with Specificity for Blood Group A Antigen Recognizes Specific O-Antigens of Bacterial Lipopolysaccharides. Journal of Biological Chemistry, 1999, 274, 3272-3278.	1.6	61
27	A Limulus Intracellular Coagulation Inhibitor Type 2. Journal of Biological Chemistry, 1995, 270, 558-565.	1.6	60
28	Factor C Acts as a Lipopolysaccharide-Responsive C3 Convertase in Horseshoe Crab Complement Activation. Journal of Immunology, 2008, 181, 7994-8001.	0.4	59
29	A Structural Perspective on the Interaction between Lipopolysaccharide and Factor C, a Receptor Involved in Recognition of Gram-negative Bacteria. Journal of Biological Chemistry, 2007, 282, 3962-3967.	1.6	55
30	Functional and structural diversities of C-reactive proteins present in horseshoe crab hemolymph plasma. FEBS Journal, 1999, 264, 314-326.	0.2	54
31	Proline-rich Cell Surface Antigens of Horseshoe Crab Hemocytes Are Substrates for Protein Cross-linking with a Clotting Protein Coagulin. Journal of Biological Chemistry, 2002, 277, 40084-40090.	1.6	51
32	Duplicated Binding Sites for $(1\hat{a}\dagger'3)$ - \hat{l}^2 -d-Glucan in the Horseshoe Crab Coagulation Factor G. Journal of Biological Chemistry, 2002, 277, 14281-14287.	1.6	50
33	A Toll-like receptor in horseshoe crabs. Immunological Reviews, 2004, 198, 106-115.	2.8	49
34	Limulus Intracellular Coagulation Inhibitor Type 3. Journal of Biological Chemistry, 1996, 271, 23768-23774.	1.6	46
35	Transglutaminase-Catalyzed Protein-Protein Cross-Linking Suppresses the Activity of the NF-κB–Like Transcription Factor Relish. Science Signaling, 2013, 6, ra61.	1.6	44
36	A Novel \hat{I}^2 -Defensin Structure: A Potential Strategy of Big Defensin for Overcoming Resistance by Gram-Positive Bacteria. Biochemistry, 2008, 47, 10611-10619.	1,2	43

#	Article	IF	CITATIONS
37	Protein Crosslinking by Transglutaminase Controls Cuticle Morphogenesis in Drosophila. PLoS ONE, 2010, 5, e13477.	1.1	43
38	Role of Hemocyte-Derived Granular Components in Invertebrate Defense. Annals of the New York Academy of Sciences, 1994, 712, 102-116.	1.8	42
39	Structure of the Antimicrobial Peptide Tachystatin A. Journal of Biological Chemistry, 2002, 277, 23651-23657.	1.6	41
40	A Cysteine Protease Inhibitor Stored in the Large Granules of Horseshoe Crab Hemocytes: Purification, Characterization, cDNA Cloning and Tissue Localization. Journal of Biochemistry, 1996, 119, 85-94.	0.9	39
41	The Complete Amino Acid Sequence of Coagulogen Isolated from Southeast Asian Horseshoe Crab, Carcinoscorpius rotundicauda1. Journal of Biochemistry, 1985, 98, 305-318.	0.9	38
42	Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS Journal, 2005, 272, 4774-4786.	2.2	38
43	Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine. FEBS Journal, 2000, 267, 3695-3703.	0.2	37
44	Sadaaki Iwanaga: discovery of the lipopolysaccharide- and Â-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity. Journal of Biochemistry, 2010, 147, 611-618.	0.9	37
45	Head-to-Tail Polymerization of Coagulin, a Clottable Protein of the Horseshoe Crab. Journal of Biological Chemistry, 2000, 275, 35297-35301.	1.6	35
46	Purification and identification of a tributyltinâ€binding protein from serum of Japanese flounder, <i>Paralichthys olivaceus</i> . Environmental Toxicology and Chemistry, 2002, 21, 1229-1235.	2.2	35
47	Immunocompetent Molecules and Their Response Network in Horseshoe Crabs. Advances in Experimental Medicine and Biology, 2010, 708, 122-136.	0.8	34
48	ppGpp functions as an alarmone in metazoa. Communications Biology, 2020, 3, 671.	2.0	34
49	Drosophila TG-A transglutaminase is secreted via an unconventional Golgi-independent mechanism involving exosomes and two types of fatty acylations. Journal of Biological Chemistry, 2017, 292, 10723-10734.	1.6	26
50	Genetic engineering approach to develop next-generation reagents for endotoxin quantification. Innate Immunity, 2017, 23, 136-146.	1.1	25
51	Purification, Characterization, and Amino Acid Sequence of an Embryonic Lectin in Perivitelline Fluid of the Horseshoe Crab. Journal of Biological Chemistry, 1999, 274, 37673-37678.	1.6	24
52	Secondary structural features of modules M2 and M3 of barnase in solution by NMR experiment and distance geometry calculation. Proteins: Structure, Function and Bioinformatics, 1993, 16, 341-356.	1.5	23
53	An Arthropod Cuticular Chitin-binding Protein Endows Injured Sites with Transglutaminase-dependent Mesh. Journal of Biological Chemistry, 2007, 282, 37316-37324.	1.6	23
54	A Cysteine-rich Protein from an Arthropod Stabilizes Clotting Mesh and Immobilizes Bacteria at Injury Sites. Journal of Biological Chemistry, 2007, 282, 33545-33552.	1.6	23

#	Article	IF	Citations
55	The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif. Journal of Peptide Science, 2007, 13, 269-279.	0.8	23
56	cDNA Cloning, Tissue Distribution, and Subcellular Localization of Horseshoe Crab Big Defensin. Biological Chemistry, 1997, 378, 289-292.	1.2	22
57	An antimicrobial peptide tachyplesin acts as a secondary secretagogue and amplifies lipopolysaccharide-induced hemocyte exocytosis. FEBS Journal, 2005, 272, 3863-3871.	2.2	21
58	Microbe-Specific C3b Deposition in the Horseshoe Crab Complement System in a C2/Factor B-Dependent or -Independent Manner. PLoS ONE, 2012, 7, e36783.	1.1	21
59	Structureâ€Function Relationships of Tachyplesins and their Analogues. Novartis Foundation Symposium, 1994, 186, 160-175.	1.2	19
60	Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade. Journal of Biological Chemistry, 2015, 290, 19379-19386.	1.6	18
61	Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. Developmental and Comparative Immunology, 2018, 81, 116-126.	1.0	17
62	The N-terminal Arg Residue Is Essential for Autocatalytic Activation of a Lipopolysaccharide-responsive Protease Zymogen. Journal of Biological Chemistry, 2014, 289, 25987-25995.	1.6	16
63	RNA Interference Directed against the Transglutaminase Gene Triggers Dysbiosis of Gut Microbiota in Drosophila. Journal of Biological Chemistry, 2016, 291, 25077-25087.	1.6	16
64	Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. Journal of Biological Chemistry, 2017, 292, 6369-6380.	1.6	16
65	Intermolecular autocatalytic activation of serine protease zymogen factor C through an active transition state responding to lipopolysaccharide. Journal of Biological Chemistry, 2018, 293, 11589-11599.	1.6	14
66	Factor G Utilizes a Carbohydrate-Binding Cleft That Is Conserved between Horseshoe Crab and Bacteria for the Recognition of Î ² -1,3- <scp>d</scp> -Glucans. Journal of Immunology, 2009, 183, 3810-3818.	0.4	11
67	Tissue Distribution and Subcellular Localization of Rabbit Liver Metalloendopeptidase. Journal of Histochemistry and Cytochemistry, 1997, 45, 41-47.	1.3	9
68	Pluripotency and a secretion mechanism of Drosophila transglutaminase. Journal of Biochemistry, 2018, 163, 165-176.	0.9	8
69	Roles of the clip domains of two protease zymogens in the coagulation cascade in horseshoe crabs. Journal of Biological Chemistry, 2020, 295, 8857-8866.	1.6	8
70	Limulus kexin: a new type of Kex2-like endoprotease specifically expressed in hemocytes of the horseshoe crab. FEBS Letters, 1996, 386, 201-204.	1.3	7
71	Difference in Enzymatic Properties between "Staphylothrombin" and Free ?-Thrombin. Annals of the New York Academy of Sciences, 1986, 485, 27-40.	1.8	6
72	Cloning, Sequencing, and Functional Expression in <i>Escherichia coli</i> of Chaperonin (<i>groESL</i>) Genes from <i>Vibrio cholerae</i> . Microbiology and Immunology, 1999, 43, 513-520.	0.7	6

#	Article	IF	CITATIONS
73	Molecular basis of non-self recognition by the horseshoe crab lectins. Journal of Endotoxin Research, 2002, 8, 437-439.	2.5	3
74	New insights into the hemolymph coagulation cascade of horseshoe crabs initiated by autocatalytic activation of a lipopolysaccharide-sensitive zymogen. Developmental and Comparative Immunology, 2022, 135, 104491.	1.0	3
75	Transglutaminase in Invertebrates. , 2015, , 117-127.		2
76	A mutant equipped with a regenerated disulphide for the missing His loop of a serine protease zymogen in the horseshoe crab coagulation cascade. Journal of Biochemistry, 2021, 170, 489-500.	0.9	2
77	Chlorophyll Deficiency Caused by a Specific Blockage of the C ₅ -Pathway in Seedlings of Virescent Mutant Rice. Plant and Cell Physiology, 1994, , .	1.5	1
78	2S9-1 Characterization of a beta-1,3-D-gulucan-recognition unit of horseshoe crab pattern-recognition protein factor G(2S9 Structural Biology of Innate Immunity,The 46th Annual Meeting of the) Tj ETQq0 0 0 rgBT /C	Overbock 1	O of 50 537
79	1P302 A structural analysis of the MAVS-regulatory mechanism using BRET(27. Bioimaging,Poster,The) Tj ETQq1	1 0.7843	l4rgBT/Ove
80	Processing Enzyme for Vitamin K-Dependent Proteins. Japanese Journal of Thrombosis and Hemostasis, 1992, 3, 284-287.	0.1	0
81	A Preparation Method of Egg Yolk Antibody in Immunized Hens Japanese Journal of Thrombosis and Hemostasis, 1998, 9, 435-439.	0.1	O
82	Purification and Assays of Tachylectin-5. Methods in Molecular Biology, 2020, 2132, 277-283.	0.4	0
83	Purification and Assays of Tachylectin-2. Methods in Molecular Biology, 2020, 2132, 309-316.	0.4	O
84	Purification and Assays of Tachycitin. Methods in Molecular Biology, 2020, 2132, 317-323.	0.4	0