Cédric Feschotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593491/publications.pdf

Version: 2024-02-01

96 papers 17,608 citations

53 h-index 97 g-index

126 all docs

126
docs citations

times ranked

126

16993 citing authors

#	Article	IF	CITATIONS
1	Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Research, 2022, 32, 1408-1423.	2.4	29
2	Single-Cell Analysis Reveals Unexpected Cellular Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-NaÃ⁻ve Adult Crohn's Disease Patients. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1717-1740.	2.3	12
3	Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo. ELife, 2022, 11 , .	2.8	31
4	Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews Molecular Cell Biology, 2022, 23, 481-497.	16.1	135
5	Recurrent evolution of vertebrate transcription factors by transposase capture. Science, 2021, 371, .	6.0	102
6	Evolution of mouse circadian enhancers from transposable elements. Genome Biology, 2021, 22, 193.	3.8	30
7	SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear elements. JCI Insight, 2021, 6, .	2.3	26
8	Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Nature Neuroscience, 2020, 23, 172-175.	7.1	46
9	A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Reports, 2020, 32, 108175.	2.9	215
10	Human Endogenous Retrovirus K Rec Forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses, 2020, 12, 1303.	1.5	14
11	A Field Guide to Eukaryotic Transposable Elements. Annual Review of Genetics, 2020, 54, 539-561.	3.2	279
12	TypeTE: a tool to genotype mobile element insertions from whole genome resequencing data. Nucleic Acids Research, 2020, 48, e36-e36.	6.5	11
13	Contribution of unfixed transposable element insertions to human regulatory variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190331.	1.8	32
14	RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9451-9457.	3.3	1,480
15	A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. SSRN Electronic Journal, 2020, , 3611279.	0.4	2
16	Host–transposon interactions: conflict, cooperation, and cooption. Genes and Development, 2019, 33, 1098-1116.	2.7	209
17	RNAi-dependent <i>Polycomb</i> repression controls transposable elements in <i>Tetrahymena</i> Genes and Development, 2019, 33, 348-364.	2.7	42
18	Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Current Opinion in Genetics and Development, 2018, 49, 15-24.	1.5	109

#	Article	IF	CITATIONS
19	The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell, 2018, 172, 275-288.e18.	13.5	382
20	Ten things you should know about transposable elements. Genome Biology, 2018, 19, 199.	3.8	817
21	Variation in proviral content among human genomes mediated by LTR recombination. Mobile DNA, 2018, 9, 36.	1.3	71
22	Transposons take remote control. ELife, 2018, 7, .	2.8	5
23	Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biology, 2018, 19, 216.	3.8	38
24	Dynamics of genome size evolution in birds and mammals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1460-E1469.	3.3	324
25	Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends in Genetics, 2017, 33, 817-831.	2.9	227
26	Co-option of endogenous viral sequences for host cell function. Current Opinion in Virology, 2017, 25, 81-89.	2.6	136
27	Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics, 2017, 18, 71-86.	7.7	1,065
28	Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biology, 2017, 15, e2001536.	2.6	39
29	Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics, 2016, 17, 344.	1.2	22
30	Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science, 2016, 351, 1083-1087.	6.0	760
31	Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. ELife, 2016, 5, .	2.8	130
32	Endogenous viral elements: evolution and impact. Virologie, 2016, 20, 158-173.	0.1	2
33	First international workshop on human endogenous retroviruses and diseases, HERVs & Disease 2015. Mobile DNA, 2015, 6, 20.	1.3	6
34	Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages. PLoS Pathogens, 2015, 11, e1005279.	2.1	45
35	Genomic DNA transposition induced by human PGBD5. ELife, 2015, 4, .	2.8	67
36	Genomics of Ecological Adaptation in Cactophilic Drosophila. Genome Biology and Evolution, 2015, 7, 349-366.	1.1	51

#	Article	IF	Citations
37	Fighting Fire with Fire: Endogenous Retrovirus Envelopes as Restriction Factors. Journal of Virology, 2015, 89, 4047-4050.	1.5	83
38	Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy. Cell Reports, 2015, 10, 551-561.	2.9	249
39	DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biology, 2015, 13, 38.	1.7	50
40	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	1.3	83
41	Mobile genetic elements and genome evolution 2014. Mobile DNA, 2014, 5, 26.	1.3	9
42	Recurrent Horizontal Transfers of Chapaev Transposons in Diverse Invertebrate and Vertebrate Animals. Genome Biology and Evolution, 2014, 6, 1375-1386.	1.1	42
43	Spy: A New Group of Eukaryotic DNA Transposons without Target Site Duplications. Genome Biology and Evolution, 2014, 6, 1748-1757.	1.1	28
44	Genomic Landscape of Human, Bat, and Ex Vivo DNA Transposon Integrations. Molecular Biology and Evolution, 2014, 31, 1816-1832.	3.5	30
45	Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends in Genetics, 2014, 30, 439-452.	2.9	235
46	Transposons Up the Dosage. Science, 2013, 342, 812-813.	6.0	3
47	The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20645-20650.	3.3	260
48	Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genetics, 2013, 9, e1003470.	1.5	574
49	A resurrected mammalian <i>hAT</i> transposable element and a closely related insect element are highly active in human cell culture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E478-87.	3.3	46
50	Genome-Wide Characterization of Endogenous Retroviruses in the Bat Myotis lucifugus Reveals Recent and Diverse Infections. Journal of Virology, 2013, 87, 8493-8501.	1.5	46
51	Functional characterization of <i>piggyBat</i> from the bat <i>Myotis lucifugus</i> unveils an active mammalian DNA transposon. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 234-239.	3.3	73
52	Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles. Molecular Biology and Evolution, 2012, 29, 503-515.	3.5	55
53	On the transposon origins of mammalian SCAND3 and KRBA2, two zinc-finger genes carrying an integrase/transposase domain. Mobile Genetic Elements, 2012, 2, 205-210.	1.8	9
54	LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders. Genome Biology and Evolution, 2012, 4, 168-183.	1.1	152

#	Article	IF	CITATIONS
55	Endogenous viruses: insights into viral evolution and impact on host biology. Nature Reviews Genetics, 2012, 13, 283-296.	7.7	721
56	Discovery of Highly Divergent Repeat Landscapes in Snake Genomes Using High-Throughput Sequencing. Genome Biology and Evolution, 2011, 3, 641-653.	1.1	87
57	An algorithm for the reconstruction of consensus sequences of ancient segmental duplications and transposon copies in eukaryotic genomes. International Journal of Bioinformatics Research and Applications, 2010, 6, 147.	0.1	3
58	Sequencing of <i>Culex quinquefasciatus</i> Establishes a Platform for Mosquito Comparative Genomics. Science, 2010, 330, 86-88.	6.0	424
59	A role for host–parasite interactions in the horizontal transfer of transposons across phyla. Nature, 2010, 464, 1347-1350.	13.7	231
60	Bornavirus enters the genome. Nature, 2010, 463, 39-40.	13.7	33
61	Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology and Evolution, 2010, 25, 537-546.	4.2	427
62	Genomic Fossils Calibrate the Long-Term Evolution of Hepadnaviruses. PLoS Biology, 2010, 8, e1000495.	2.6	126
63	Tuned for Transposition: Molecular Determinants Underlying the Hyperactivity of a <i>Stowaway</i> MITE. Science, 2009, 325, 1391-1394.	6.0	139
64	HorizontalSPINning of transposons. Communicative and Integrative Biology, 2009, 2, 117-119.	0.6	14
65	Parallel Germline Infiltration of a Lentivirus in Two Malagasy Lemurs. PLoS Genetics, 2009, 5, e1000425.	1.5	96
66	Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes. Genome Biology and Evolution, 2009, 1, 205-220.	1.1	102
67	A cornucopia of <i>Helitrons</i> shapes the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19747-19748.	3.3	24
68	Dynamics of transposable elements: towards a community ecology of the genome. Trends in Genetics, 2009, 25, 317-323.	2.9	147
69	Repair-Mediated Duplication by Capture of Proximal Chromosomal DNA Has Shaped Vertebrate Genome Evolution. PLoS Genetics, 2009, 5, e1000469.	1.5	16
70	Transposable elements and the evolution of regulatory networks. Nature Reviews Genetics, 2008, 9, 397-405.	7.7	1,108
71	Multiple waves of recent DNA transposon activity in the bat, <i>Myotis lucifugus</i> . Genome Research, 2008, 18, 717-728.	2.4	154
72	Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17023-17028.	3.3	189

#	Article	IF	Citations
73	The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Research, 2007, 17, 422-432.	2.4	249
74	PIF-like Transposons are Common in Drosophila and Have Been Repeatedly Domesticated to Generate New Host Genes. Molecular Biology and Evolution, 2007, 24, 1872-1888.	3.5	57
75	Convergent Domestication of pogo-like Transposases into Centromere-Binding Proteins in Fission Yeast and Mammals. Molecular Biology and Evolution, 2007, 25, 29-41.	3.5	112
76	A study of the repetitive structure and distribution of short motifs in human genomic sequences. International Journal of Bioinformatics Research and Applications, 2007, 3, 523.	0.1	5
77	Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene, 2007, 390, 3-17.	1.0	213
78	DNA Transposons and the Evolution of Eukaryotic Genomes. Annual Review of Genetics, 2007, 41, 331-368.	3.2	1,003
79	Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1895-1900.	3.3	154
80	Micro-repetitive Structure of Genomic Sequences and the Identification of Ancient Repeat Elements. , 2007, , .		6
81	Transposase-Derived Transcription Factors Regulate Light Signaling in <i>Arabidopsis</i> . Science, 2007, 318, 1302-1305.	6.0	439
82	Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8101-8106.	3.3	219
83	The piggyBac transposon holds promise for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14981-14982.	3.3	43
84	DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Research, 2005, 33, 2153-2165.	6.5	74
85	Non-mammalian c-integrases are encoded by giant transposable elements. Trends in Genetics, 2005, 21, 551-552.	2.9	50
86	Unexpected Diversity and Differential Success of DNA Transposons in Four Species of Entamoeba Protozoans. Molecular Biology and Evolution, 2005, 22, 1751-1763.	3.5	56
87	Merlin, a New Superfamily of DNA Transposons Identified in Diverse Animal Genomes and Related to Bacterial IS1016 Insertion Sequences. Molecular Biology and Evolution, 2004, 21, 1769-1780.	3.5	58
88	Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Current Opinion in Plant Biology, 2004, 7, 115-119.	3.5	162
89	PIF- and Pong-Like Transposable Elements: Distribution, Evolution and Relationship With Tourist-Like Miniature Inverted-Repeat Transposable Elements. Genetics, 2004, 166, 971-986.	1.2	27
90	Genome-Wide Analysis of <i>mariner</i> -Like Transposable Elements in Rice Reveals Complex Relationships With <i>Stowaway</i> Miniature Inverted Repeat Transposable Elements (MITEs). Genetics, 2003, 163, 747-758.	1.2	152

#	Article	IF	CITATION
91	An Ac -like Transposable Element Family With Transcriptionally Active Y-Linked Copies in the White Campion, Silene latifolia. Genetics, 2003, 165, 799-807.	1.2	22
92	Mariner-like transposases are widespread and diverse in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 280-285.	3.3	111
93	Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics, 2002, 3, 329-341.	7.7	854
94	Birth of a Retroposon: The Twin SINE Family from the Vector Mosquito Culex pipiens May Have Originated from a Dimeric tRNA Precursor. Molecular Biology and Evolution, 2001, 18, 74-84.	3.5	35
95	Evidence that a Family of Miniature Inverted-Repeat Transposable Elements (MITEs) from the Arabidopsis thaliana Genome Has Arisen from a pogo-like DNA Transposon. Molecular Biology and Evolution, 2000, 17, 730-737.	3.5	149
96	Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene, 2000, 250, 109-116.	1.0	43