Wei-Ping Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593333/publications.pdf

Version: 2024-02-01

687220 752573 20 680 13 20 citations h-index g-index papers 21 21 21 1242 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Cranial Bone Transport Promotes Angiogenesis, Neurogenesis, and Modulates Meningeal Lymphatic Function in Middle Cerebral Artery Occlusion Rats. Stroke, 2022, 53, 1373-1385.	1.0	6
2	De-osteogenic-differentiated mesenchymal stem cells accelerate fracture healing by mir-92b. Journal of Orthopaedic Translation, 2021, 27, 25-32.	1.9	13
3	Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice. Calcified Tissue International, 2021, 109, 55-65.	1.5	16
4	Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death and Disease, 2021, 12, 794.	2.7	6
5	Hydroxysafflor yellow A promotes osteogenesis and bone development via epigenetically regulating Î ² -catenin and prevents ovariectomy-induced bone loss. International Journal of Biochemistry and Cell Biology, 2021, 137, 106033.	1.2	7
6	Asiatic acid protects articular cartilage through promoting chondrogenesis and inhibiting inflammation and hypertrophy in osteoarthritis. European Journal of Pharmacology, 2021, 907, 174265.	1.7	15
7	Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits. Bone and Joint Research, 2021, 10, 10-21.	1.3	9
8	Sox11 Modified Tendon-Derived Stem Cells Promote the Repair of Osteonecrosis of Femoral Head. Cell Transplantation, 2021, 30, 096368972110538.	1.2	2
9	MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/ \hat{I}^2 -Catenin Signaling. Molecular Therapy - Nucleic Acids, 2020, 21, 1017-1028.	2.3	41
10	Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 359.	2.0	18
11	Vasoactive Intestinal Peptide Stimulates Bone Marrow-Mesenchymal Stem Cells Osteogenesis Differentiation by Activating Wnt/l²-Catenin Signaling Pathway and Promotes Rat Skull Defect Repair. Stem Cells and Development, 2020, 29, 655-666.	1.1	47
12	A novel protocol for isolation and culture of multipotent progenitor cells from human urine. Journal of Orthopaedic Translation, 2019, 19, 12-17.	1.9	3
13	Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Research and Therapy, 2019, 10, 219.	2.4	52
14	Characterisation of multipotent stem cells from human peripheral blood using an improved protocol. Journal of Orthopaedic Translation, 2019, 19, 18-28.	1.9	19
15	Lgr5â€overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics. FASEB Journal, 2019, 33, 8565-8577.	0.2	25
16	Sox11-modified mesenchymal stem cells accelerate cartilage defect repair in SD rats. Cell and Tissue Research, 2019, 376, 247-255.	1.5	14
17	MicroRNA-218 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and Accelerates Bone Fracture Healing. Calcified Tissue International, 2018, 103, 227-236.	1.5	28
18	Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation, 2017, 9, 19-27.	1.9	141

WEI-PING LIN

#	Article	IF	CITATIONS
19	Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Research and Therapy, 2017, 8, 275.	2.4	201
20	Tenomodulin highly expressing MSCs as a better cell source for tendon injury healing. Oncotarget, 2017, 8, 77424-77435.	0.8	17