Ning Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593267/publications.pdf

Version: 2024-02-01

44042 40954 10,076 189 48 93 citations h-index g-index papers 210 210 210 10425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theoretical study of the effects of the shape of the spinning triangle. Textile Reseach Journal, 2021, 91, 289-296.	1.1	2
2	Determination of the strength and elongation distribution of single wool through fiber bundle testing based on acoustic emissions. Textile Reseach Journal, 2021, 91, 1263-1273.	1.1	4
3	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. Journal of Energy Chemistry, 2021, 60, 572-590.	7.1	49
4	Active-powering pressure-sensing fabric devices. Journal of Materials Chemistry A, 2020, 8, 358-368.	5.2	21
5	Modeling the thermoviscoelasticity of transversely isotropic shape memory polymer composites. Smart Materials and Structures, 2020, 29, 025012.	1.8	9
6	Shape memory polymers for design of smart stocking., 2020,, 141-154.		2
7	Theoretical analysis and simulation of twist blockage and yarn tension in a dynamic twist-resistant device. Textile Reseach Journal, 2020, 90, 1741-1748.	1.1	4
8	Steam impinging and heat and water spreading in fabrics. Textile Reseach Journal, 2019, 89, 1455-1471.	1.1	8
9	A new technique to clean down and feather dust: Composition and resolution of down dust. Textile Reseach Journal, 2019, 89, 3080-3088.	1.1	5
10	Unique Thermal Properties of Clothing Materials. Global Challenges, 2019, 3, 1800082.	1.8	8
11	Effect of Polyethylene Film Lamination on the Water Absorbency of Hydrophilic-finished Polypropylene Non-woven Fabric. Fibers and Polymers, 2019, 20, 1404-1410.	1.1	6
12	A New Method for Measuring Fabric Drape with a Novel Parameter for Classifying Fabrics. Fibers, 2019, 7, 70.	1.8	8
13	Design and thermal insulation performance analysis of endothermic opacifiers doped silica aerogels. International Journal of Thermal Sciences, 2019, 145, 105995.	2.6	21
14	Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution. ACS Omega, 2019, 4, 15348-15358.	1.6	22
15	Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles. Carbon, 2019, 152, 106-113.	5 . 4	52
16	Paper Electronics: Allâ€inâ€One Iontronic Sensing Paper (Adv. Funct. Mater. 11/2019). Advanced Functional Materials, 2019, 29, 1970072.	7.8	6
17	Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Composites Part A: Applied Science and Manufacturing, 2019, 117, 202-210.	3 . 8	105
18	Allâ€inâ€One Iontronic Sensing Paper. Advanced Functional Materials, 2019, 29, 1807343.	7.8	85

#	Article	IF	Citations
19	Numerical modeling of the gas-contributed thermal conductivity of aerogels. International Journal of Heat and Mass Transfer, 2019, 131, 217-225.	2.5	26
20	Durable visible light self-cleaning surfaces imparted by TiO ₂ /SiO ₂ /GO photocatalyst. Textile Reseach Journal, 2019, 89, 517-527.	1.1	17
21	Automatic foot scanning and measurement based on multiple RGB-depth cameras. Textile Reseach Journal, 2018, 88, 167-181.	1.1	13
22	Foot shape prediction using elliptical Fourier analysis. Textile Reseach Journal, 2018, 88, 1026-1037.	1.1	6
23	Micro-nanostructure-based super-hydrophobic surface on cotton fabric. Textile Reseach Journal, 2018, 88, 2602-2610.	1.1	2
24	Effect of sintering temperature on the photocatalytic activity of Carbon–Bi2O3–TiO2 composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 2201-2208.	1.1	3
25	Effects of pressure-free steam ironing on cotton fabric surfaces and wrinkle recovery. Textile Reseach Journal, 2018, 88, 2532-2543.	1.1	9
26	Residual thermal stresses prediction for <scp>CVD</scp> coating/substrate system based on a numerical model. International Journal of Applied Ceramic Technology, 2018, 15, 1397-1406.	1.1	2
27	Design and optimization of core/shell structures as highly efficient opacifiers for silica aerogels as high-temperature thermal insulation. International Journal of Thermal Sciences, 2018, 133, 206-215.	2.6	37
28	Shear properties of threeâ€dimensional woven composite reinforcements. Polymer Composites, 2017, 38, 244-251.	2.3	13
29	Effective gas diffusion coefficient in fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer, 2017, 107, 736-746.	2.5	29
30	Preparation and characterization of dense graphite/glassy carbon composite coating for sealing application. Materials Research Express, 2017, 4, 095601.	0.8	4
31	Electrospun nanofabric based all-fabric iontronic pressure sensor. , 2017, , .		1
32	Wearable Sensors: Supercapacitive Iontronic Nanofabric Sensing (Adv. Mater. 36/2017). Advanced Materials, 2017, 29, .	11,1	4
33	Supercapacitive Iontronic Nanofabric Sensing. Advanced Materials, 2017, 29, 1700253.	11.1	187
34	Enhanced performance of carbon/carbon supercapacitors upon graphene addition. Nanotechnology for Environmental Engineering, 2017, 2, 1.	2.0	9
35	Stress memory materials and their fundamental platform. Journal of Materials Chemistry A, 2017, 5, 503-511.	5.2	19
36	Dynamic mechanical relaxations of electrospun poly(acrylonitrile-co-methyl acrylate) nanofibrous yarn. Textile Reseach Journal, 2017, 87, 2193-2203.	1.1	8

#	Article	IF	CITATIONS
37	Memory Bandage for Functional Compression Management for Venous Ulcers. Fibers, 2016, 4, 10.	1.8	10
38	Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and Buildings, 2016, 125, 298-309.	3.1	30
39	A smart orthopedic compression device based on a polymeric stress memory actuator. Materials and Design, 2016, 97, 222-229.	3.3	27
40	Fabrication and characterization of low-cost and green vacuum insulation panels with fumed silica/rice husk ash hybrid core material. Materials and Design, 2016, 107, 440-449.	3.3	32
41	Smart medical stocking using memory polymer for chronic venous disorders. Biomaterials, 2016, 75, 174-181.	5.7	55
42	Origin of tensile strength of a woven sample cut in bias directions. Royal Society Open Science, 2015, 2, 140499.	1.1	14
43	PREFACE: HEAT AND MASS TRANSFER IN POROUS MEDIA. Journal of Porous Media, 2015, 18, v-vi.	1.0	0
44	A theoretical analysis of local thermal equilibrium in fibrous materials. Thermal Science, 2015, 19, 69-82.	0.5	5
45	Lattice Boltzmann Modeling of Thermal Conduction in Composites with Thermal Contact Resistance. Communications in Computational Physics, 2015, 17, 1037-1055.	0.7	22
46	Liquid transmission characteristics of padding bandages under pressure. Journal of Biomaterials Applications, 2015, 30, 589-598.	1.2	1
47	Supercapacitors Performance Evaluation. Advanced Energy Materials, 2015, 5, 1401401.	10.2	1,090
48	Mechanical and electrical properties of the PA6/SWNTs nanofiber yarn by electrospinning. Polymer Engineering and Science, 2014, 54, 1618-1624.	1.5	30
49	Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate. Materials & Design, 2014, 54, 315-322.	5.1	114
50	A more comprehensive transport model for multilayer-cloth for perspiration based infrared camouflage. Applied Thermal Engineering, 2014, 68, 10-19.	3.0	6
51	KOH activated carbon/graphene nanosheets composites as high performance electrode materials in supercapacitors. RSC Advances, 2014, 4, 48758-48764.	1.7	36
52	High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. Journal of Power Sources, 2014, 270, 106-112.	4.0	211
53	Exploring the significance of structural hierarchy in material systemsâ€"A review. Applied Physics Reviews, 2014, 1, 021302.	5. 5	29
54	Study on intra/inter-ply shear deformation of three dimensional woven preforms for composite materials. Materials & Design, 2013, 49, 151-159.	5.1	32

#	Article	IF	CITATIONS
55	A study and a design criterion for multilayer-structure in perspiration based infrared camouflage. Experimental Thermal and Fluid Science, 2013, 46, 211-220.	1.5	9
56	Supercapacitor performance of crumpled and planar graphene materials produced by hydrogen gas reduction of graphene oxide. Journal of Materials Chemistry A, 2013, 1, 7957.	5.2	23
57	A comparative study on low-velocity impact response of fabric composite laminates. Materials & Design, 2013, 50, 750-756.	5.1	104
58	Intermolecular Interaction and Magnetic Coupling Mechanism of a Mononuclear Nickel(II) Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1026-1031.	0.6	5
59	GRAIN SIZE EFFECTS ON EFFECTIVE THERMAL CONDUCTIVITY OF POROUS MATERIALS WITH INTERNAL THERMAL CONTACT RESISTANCE. Journal of Porous Media, 2013, 16, 1043-1048.	1.0	22
60	Microstructure and finite element analysis of 3D five-directional braided composites. Journal of Reinforced Plastics and Composites, 2012, 31, 107-115.	1.6	34
61	Thermal sensation at index finger while applying external pressure at upper arm. Journal of Thermal Biology, 2012, 37, 502-509.	1.1	4
62	Developing UV-protective cotton fabric based on SiOx nanoparticles. Fibers and Polymers, 2012, 13, 489-494.	1.1	8
63	Effects of layering sequence on thermal response of multilayer fibrous materials: Unsteady-state cases. Experimental Thermal and Fluid Science, 2012, 41, 143-148.	1.5	16
64	Effects of layer stacking sequence on temperature response of multi-layer composite materials under dynamic conditions. Applied Thermal Engineering, 2012, 33-34, 219-226.	3.0	18
65	Feasibility of perspiration based infrared Camouflage. Applied Thermal Engineering, 2012, 36, 32-38.	3.0	18
66	Skin thermal stimulation on touching cool fabric from the transient stage to steady-state stage. International Journal of Thermal Sciences, 2012, 53, 80-88.	2.6	15
67	Graphene based supercapacitor fabricated by vacuum filtration deposition. Journal of Power Sources, 2012, 206, 476-482.	4.0	118
68	Measuring the thermophysical properties of porous fibrous materials with a new unsteady-state method. Journal of Thermal Analysis and Calorimetry, 2012, 107, 395-405.	2.0	13
69	A comparison of optimization theories for energy conservation in heat exchanger groups. Science Bulletin, 2011, 56, 449-454.	1.7	36
70	Water effect on the rheologic behavior of PAN solution during thermal-induced gelation process. Polymers for Advanced Technologies, 2011, 22, 2279-2284.	1.6	7
71	Evaluation of high performance fabric under light irradiation. Journal of Applied Polymer Science, 2011, 120, 552-556.	1.3	22
72	A new approach to analysis and optimization of evaporative cooling system II: Applications. Energy, 2011, 36, 2890-2898.	4.5	63

#	Article	lF	Citations
73	Band structure in two-dimensional fiber–air phononic crystals. Physica B: Condensed Matter, 2011, 406, 963-966.	1.3	11
74	KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources, 2011, 196, 6003-6006.	4.0	173
75	Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. Sensors and Actuators B: Chemical, 2011, 152, 316-323.	4.0	75
76	The influence of grayâ€level coâ€occurrence matrix variables on the textural features of wrinkled fabric surfaces. Journal of the Textile Institute, 2011, 102, 315-321.	1.0	14
77	An alternative criterion in heat transfer optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1012-1028.	1.0	77
78	A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy, 2010, 35, 2448-2454.	4.5	83
79	Blood flow fluctuation underneath human forearm skin caused by local thermal stimuli of different fabrics. Journal of Thermal Biology, 2010, 35, 372-377.	1.1	5
80	Multi-dimensional effect on optimal network structure for fluid distribution. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1038-1043.	1.8	8
81	Nonlinear effective properties of unsaturated porous materials. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, $11,\ldots$	0.4	2
82	Fractal Approach to Sound Absorption Behavior in Nonwoven. , 2010, , .		2
83	Soft Contact of Fibrous Surfaces. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	0.4	2
84	Transient Methods of Thermal Properties Measurement on Fibrous Materials. Journal of Heat Transfer, 2010, 132, .	1.2	18
85	Compression behavior evaluation of single down fiber and down fiber assemblies. Journal of the Textile Institute, 2010, 101, 253-260.	1.0	21
86	Mass Nature of Heat and Its Application VII: Coupled Heat and Mass Transfer Optimization Based on the Entransy Theory. , 2010 , , .		0
87	In vitrohuman topical bioactive drug transdermal absorption: estradiol. Cutaneous and Ocular Toxicology, 2009, 28, 171-175.	0.5	9
88	Preparation and comparison of two electrodes for supercapacitors: Pani/CNT/Ni and Pani/Alizarinâ€treated nickel. Journal of Applied Polymer Science, 2009, 113, 1070-1081.	1.3	30
89	Investigation the jet stretch in PAN fiber dryâ€jet wet spinning for PANâ€DMSOâ€H ₂ O system. Journal of Applied Polymer Science, 2009, 114, 3621-3625.	1.3	22
90	Optimization principles for convective heat transfer. Energy, 2009, 34, 1199-1206.	4.5	181

#	Article	IF	Citations
91	Elastic property of multiphase composites with random microstructures. Journal of Computational Physics, 2009, 228, 5978-5988.	1.9	40
92	Rheological study on thermal-induced gelation behavior of polyacrylonitrile solution. Journal of Polymer Research, 2009, 16, 341-350.	1.2	19
93	Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution with water. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1437-1442.	2.4	24
94	Determination of sample size for step-wise transient thermal tests. Polymer Testing, 2009, 28, 307-314.	2.3	14
95	Investigation into the gelation and crystallization of polyacrylonitrile. European Polymer Journal, 2009, 45, 1617-1624.	2.6	51
96	Thermal conductivity enhancement of carbon fiber composites. Applied Thermal Engineering, 2009, 29, 418-421.	3.0	174
97	Optimization Principle for Variable Viscosity Fluid Flow and Its Application to Heavy Oil Flow Drag Reduction. Energy & Energy & 2009, 23, 4470-4478.	2.5	21
98	Gelation of polyacrylonitrile in a mixed solvent: scaling and fractal analysis. Soft Matter, 2009, 5, 4297.	1.2	32
99	Fractal character forecast of down fiber assembly microstructure. Journal of the Textile Institute, 2009, 100, 539-544.	1.0	6
100	Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. International Journal of Heat and Mass Transfer, 2008, 51, 1325-1331.	2.5	225
101	Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration. Polymer, 2008, 49, 5676-5682.	1.8	48
102	Investigating the spinnability in the dry-jet wet spinning of PAN precursor fiber. Journal of Applied Polymer Science, 2008, 110, 1997-2000.	1.3	49
103	Thermodynamic study of a water–dimethylformamide–polyacrylonitrile ternary system. Journal of Applied Polymer Science, 2008, 110, 3439-3447.	1.3	43
104	Capstan equation including bending rigidity and non-linear frictional behavior. Mechanism and Machine Theory, 2008, 43, 661-675.	2.7	48
105	Thermogravimetry–mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst. Carbohydrate Polymers, 2008, 72, 222-228.	5.1	37
106	Three-dimensionally intercrossing Mn3O4 nanowires. Acta Materialia, 2008, 56, 3516-3522.	3.8	29
107	Generalized capstan problem: Bending rigidity, nonlinear friction, and extensibility effect. Tribology International, 2008, 41, 524-534.	3.0	37
108	Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering Reports, 2008, 63, 1-30.	14.8	558

#	Article	IF	Citations
109	Interfacial kinetics effects on transdermal drug delivery: a computer modeling. Skin Research and Technology, 2008, 14, 165-172.	0.8	3
110	Transport properties of functionally graded materials. Journal of Applied Physics, 2007, 102, .	1.1	16
111	Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75, 036702.	0.8	394
112	Numerical analyses of effective dielectric constant of multiphase microporous media. Journal of Applied Physics, 2007, 101, 114102.	1.1	60
113	Three-dimensional effect on the effective thermal conductivity of porous media. Journal Physics D: Applied Physics, 2007, 40, 260-265.	1.3	7 5
114	Vascular mimetics based on microfluidics for imaging the leukocyte–endothelial inflammatory response. Lab on A Chip, 2007, 7, 448-456.	3.1	121
115	Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. International Journal of Thermal Sciences, 2007, 46, 848-855.	2.6	153
116	Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. Journal of Colloid and Interface Science, 2007, 311, 562-570.	5.0	77
117	Skin friction blistering: computer model. Skin Research and Technology, 2007, 13, 310-316.	0.8	22
118	Extensible elastica solutions on the large deflection of fiber cantilever with circular wavy crimp. II. Classification of equilibrium configurations. Fibers and Polymers, 2007, 8, 399-407.	1.1	0
119	Tension transmission via an elastic rod gripped by two circular-edged plates. International Journal of Mechanical Sciences, 2007, 49, 1095-1103.	3.6	10
120	Electroless synthesis of large scale Co–Zn–P nanowire arrays and the magnetic behaviour. Applied Surface Science, 2007, 253, 4546-4549.	3.1	13
121	Textiles and Human Skin, Microclimate, Cutaneous Reactions: An Overview. Cutaneous and Ocular Toxicology, 2006, 25, 23-39.	0.5	95
122	High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology, 2006, 17, 5314-5318.	1.3	344
123	Mechanical characterization of the interfaces in laminated composites. Composite Structures, 2006, 74, 25-29.	3.1	11
124	Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson–Boltzmann method. Journal of Colloid and Interface Science, 2006, 304, 246-253.	5.0	67
125	Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160, 1487-1494.	4.0	268
126	An EFE Model on Skin-Sleeve Interactions During Arm Rotation. Journal of Biomechanical Engineering, 2006, 128, 872-878.	0.6	7

#	Article	IF	Citations
127	Change of Yarn Hairiness during Winding Process: Analysis of the Protruding Fiber Ends. Textile Reseach Journal, 2006, 76, 71-77.	1.1	7
128	Modeling Liquid Transport in Fibrous Structures: An Multi-Scale Approach. Journal of Computational and Theoretical Nanoscience, 2006, 3, 506-512.	0.4	2
129	Quasistatic model for two-strand yarn spinning. Mechanics Research Communications, 2005, 32, 197-200.	1.0	30
130	On the Poisson's ratios of a woven fabric. Composite Structures, 2005, 68, 505-510.	3.1	65
131	High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology, 2005, 16, 350-353.	1.3	265
132	CVD growth of carbon nanotubes directly on nickel substrate. Materials Letters, 2005, 59, 1678-1682.	1.3	71
133	Shear deformation analysis for woven fabrics. Composite Structures, 2005, 67, 317-322.	3.1	34
134	Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 261-267.	1.9	27
135	Electron spin resonance on carbon nanotubes-polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3406-3412.	2.4	30
136	A Nonlinear Dynamic Model for Two-Strand Yarn Spinning. Textile Reseach Journal, 2005, 75, 181-184.	1.1	40
137	Grab and Strip Tensile Strengths for Woven Fabrics: An Experimental Verification. Textile Reseach Journal, 2005, 75, 789-796.	1.1	17
138	Carbon nanotube thin films with ordered structures. Journal of Materials Chemistry, 2005, 15, 548.	6.7	42
139	Variational principles for nonlinear fiber optics. Chaos, Solitons and Fractals, 2005, 24, 309-311.	2.5	11
140	Preparation of single-walled carbon nanotube reinforced magnesia films. Nanotechnology, 2004, 15, 227-231.	1.3	11
141	Stochastic modelling of tear behaviour of coated fabrics. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 293-309.	0.8	28
142	Changing Yarn Hairiness During Windingâ€" Analyzing the Trailing Fiber Ends. Textile Reseach Journal, 2004, 74, 905-913.	1.1	9
143	Thermo-electro-hydrodynamic model for electrospinning process. International Journal of Nonlinear Sciences and Numerical Simulation, 2004, 5, .	0.4	96
144	Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. Journal of Applied Polymer Science, 2004, 92, 3201-3210.	1.3	377

#	Article	lF	Citations
145	Mechanical Behaviors of Woven Fabrics. , 2004, , 43.		O
146	Variational model for ionomeric polymer–metal composite. Polymer, 2003, 44, 8195-8199.	1.8	18
147	Wetting of a fiber bundle in fibrous structures. Polymer Composites, 2003, 24, 314-322.	2.3	23
148	Micromechanics of braided composites via multivariable FEM. Computers and Structures, 2003, 81, 2021-2027.	2.4	60
149	An experimental examination of fiber reinforcing effect with a novel composite specimen. Composites Part B: Engineering, 2003, 34, 499-505.	5.9	0
150	Frictional Behavior of Synthetic Yarns During Processing. Textile Reseach Journal, 2003, 73, 1071-1078.	1.1	4
151	Relationship Between Grab and Strip Tensile Strengths for Fabrics with Roughly Linear Mechanical Behavior. Textile Reseach Journal, 2003, 73, 165-171.	1.1	6
152	Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Materials Letters, 2002, 57, 434-438.	1.3	98
153	Physical properties of twisted structures. II. Industrial yarns, cords, and ropes. Journal of Applied Polymer Science, 2002, 83, 610-630.	1.3	37
154	Weibull analysis of the tensile behavior of fibers with geometrical irregularities. Journal of Materials Science, 2002, 37, 1401-1406.	1.7	89
155	Preparation of carbon nanotubes composite sheet using electrophoretic deposition process. Journal of Materials Science Letters, 2002, 21, 565-568.	0.5	29
156	Relationship Between Fiber and Yarn Strength. Textile Reseach Journal, 2001, 71, 960-964.	1.1	61
157	Relationship between scale effect and structure levels in fibrous structures. Polymer Composites, 2000, 21, 187-195.	2.3	6
158	A Stochastic Simulation of the Failure Process and Ultimate Strength of Blended Continuous Yarns. Textile Reseach Journal, 2000, 70, 415-430.	1.1	18
159	Studying the Mechanical Properties of Blended Fibrous Structures Using a Simple Model. Textile Reseach Journal, 2000, 70, 502-507.	1.1	22
160	An Oblique Fiber Bundle Test and Analysis. Textile Reseach Journal, 2000, 70, 671-674.	1.1	16
161	Developing a New Drafting System for Ring Spinning Machines. Textile Reseach Journal, 2000, 70, 154-160.	1.1	12
162	Thermo-Insulating Properties of Perpendicular-Laid Versus Cross-Laid Lofty Nonwoven Fabrics. Textile Reseach Journal, 2000, 70, 121-128.	1.1	33

#	Article	IF	Citations
163	MECHANICAL PROPERTIES OF GELLAN AND POLYACRYLAMIDE GELS WITH IMPLICATIONS FOR SOIL STABILIZATION. Soil Science, 2000, 165, 778-792.	0.9	36
164	Grip point spacing along the edges of an anisotropic fabric sheet in a biaxial tensile test. Polymer Composites, 1999, 20, 305-313.	2.3	15
165	The fine structure of bicomponent polyester fibers. Journal of Applied Polymer Science, 1999, 71, 1163-1173.	1.3	17
166	Experimental Methods for Measuring Fabric Mechanical Properties: A Review and Analysis. Textile Reseach Journal, 1999, 69, 866-875.	1.1	101
167	The hybrid effects in hybrid fibre composites: experimental study using twisted fibrous structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454, 1109-1127.	1.0	6
168	Comparing Dynamic and Static Methods for Measuring Thermal Conductive Properties of Textiles. Textile Reseach Journal, 1998, 68, 47-56.	1.1	28
169	Shear Strength of Fibrous Sheets: An Experimental Investigation. Textile Reseach Journal, 1997, 67, 593-600.	1.1	11
170	Micromechanics of a Planar Hybrid Fibrous Network. Textile Reseach Journal, 1997, 67, 907-925.	1.1	47
171	Analysis of woven fabric strengths: Prediction of fabric strength under uniaxial and biaxial extensions. Composites Science and Technology, 1996, 56, 311-327.	3.8	66
172	Structural Anisotropy, Failure Criterion, and Shear Strength of Woven Fabrics. Textile Reseach Journal, 1996, 66, 238-244.	1.1	21
173	The Elastic Constants of Randomly Oriented Fiber Composites: A New Approach to Prediction. Science and Engineering of Composite Materials, 1996, 5, .	0.6	39
174	A Detailed Examination of the Translation Efficiency of Fiber Strength into Composite Strength. Journal of Reinforced Plastics and Composites, 1995, 14, 2-28.	1.6	7
175	Analytical Characterization of the Anisotropy and Local Heterogeneity of Short Fiber Composites: Fiber Fraction as a Variable. Journal of Composite Materials, 1994, 28, 1500-1531.	1.2	50
176	Prediction of statistical strengths of twisted fibre structures. Journal of Materials Science, 1993, 28, 6107-6114.	1.7	49
177	Theoretical determination of the optimal fiber volume fraction and fiber-matrix property compatibility of short fiber composites. Polymer Composites, 1993, 14, 85-93.	2.3	67
178	Theoretical Modeling and Analysis of Fiber-pull-out Behaviour from a Bonded Fibrous Matrix: The Elastic-bond Case. Journal of the Textile Institute, 1993, 84, 472-485.	1.0	13
179	An Alternative Approach to the Objective Measurement of Fabrics. Textile Reseach Journal, 1993, 63, 33-43.	1.1	66
180	Development of a Constitutive Theory for Short Fiber Yams. Textile Reseach Journal, 1993, 63, 565-572.	1.1	24

#	Article	IF	Citations
181	Development of a Constitutive Theory for Short Fiber Yarns Part II: Mechanics of Staple Yarn With Slippage Effect. Textile Reseach Journal, 1993, 63, 504-514.	1.1	46
182	Mechanical Properties of Fabric Woven from Yarns Produced by Different Spinning Technologies: Yarn Failure in Woven Fabric. Textile Reseach Journal, 1993, 63, 123-134.	1.1	38
183	A Modified Analysis of the Microstructural Characteristics of General Fiber Assemblies. Textile Reseach Journal, 1993, 63, 336-345.	1.1	103
184	Behavior of Yarn Pullout from Woven Fabrics: Theoretical and Experimental. Textile Reseach Journal, 1993, 63, 629-637.	1.1	43
185	Physical Interpretations of Curves Obtained through the Fabric Extraction Process for Handle Measurement. Textile Reseach Journal, 1992, 62, 279-290.	1.1	61
186	Development of a Constitutive Theory for Short Fiber Yarns: Mechanics of Staple Yarn Without Slippage Effect. Textile Reseach Journal, 1992, 62, 749-765.	1.1	85
187	Structural Modifications of Multiwalled Carbon Nanotubes by Swift Heavy Ions Irradiation. Journal of Nano Research, 0, 10, 1-9.	0.8	15
188	Simulation of Efficiency of Liquid Cooling Garments. Advanced Materials Research, 0, 331, 636-639.	0.3	2
189	Theoretical modeling and characterization of bending properties of fabrics with friction and extensibility effect. Journal of the Textile Institute, 0 , $1-13$.	1.0	0