List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593024/publications.pdf Version: 2024-02-01

		87401	139680
130	4,785	40	61
papers	citations	h-index	g-index
131	131	131	5019
151	131	131	5015
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function. Journal of Advanced Research, 2023, 43, 247-257.	4.4	9
2	Catalytic function, mechanism, and application of plant acyltransferases. Critical Reviews in Biotechnology, 2022, 42, 125-144.	5.1	18
3	A network pharmacology-based strategy to explore the pharmacological mechanisms of Antrodia camphorata and antcin K for treating type II diabetes mellitus. Phytomedicine, 2022, 96, 153851.	2.3	9
4	Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. Journal of Advanced Research, 2022, 36, 201-210.	4.4	57
5	A highly selective 2′′- <i>O</i> -glycosyltransferase from <i>Ziziphus jujuba</i> and <i>De novo</i> biosynthesis of isovitexin 2′′- <i>O</i> -glucoside. Chemical Communications, 2022, 58, 2472-2475.	2.2	4
6	GuRhaGT, a highly specific saponin 2′′- <i>O</i> -rhamnosyltransferase from <i>Glycyrrhiza uralensis</i> . Chemical Communications, 2022, 58, 5277-5280.	2.2	8
7	ä _s è•è•æ•^物è [≁] ç"ç©¶æ−¹æ³•åŠèį›å±•. Scientia Sinica Vitae, 2022, , .	0.1	0
8	Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity. Journal of Ethnopharmacology, 2022, 292, 115146.	2.0	7
9	Functional Characterization and Protein Engineering of a Triterpene 3″6″2′â€ <i>O</i> â€Glycosyltransfera Reveal a Conserved Residue Critical for the Regiospecificity. Angewandte Chemie, 2022, 134, .	se 1.6	4
10	Functional Characterization and Protein Engineering of a Triterpene 3…6…2′â€ <i>O</i> â€Glycosyltransfera Reveal a Conserved Residue Critical for the Regiospecificity. Angewandte Chemie - International Edition, 2022, 61, .	se 7.2	23
11	Rational design of a highly selective UGT1A1 probe and its application in drug discovery. Sensors and Actuators B: Chemical, 2022, 364, 131826.	4.0	4
12	Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114793.	1.4	13
13	Bioactive prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis. Phytochemistry, 2022, 201, 113284.	1.4	6
14	Biotransformation of natural products and its significance in drug development. , 2022, , 755-770.		0
15	Terpenoids from the medicinal mushroom <i>Antrodia camphorata</i> : chemistry and medicinal potential. Natural Product Reports, 2021, 38, 83-102.	5.2	58
16	Simultaneous determination of 35 constituents and elucidation of effective constituents in a multi-herb Chinese medicine formula Xiaoer-Feire-Kechuan. Journal of Pharmaceutical Analysis, 2021, 11, 717-725.	2.4	6
17	AmAT19, an acetyltransferase from Astragalus membranaceus, catalyses specific 6î±-OH acetylation for tetracyclic triterpenes and steroids. Organic and Biomolecular Chemistry, 2021, 19, 7186-7189.	1.5	3
18	Phytochemistry and cardiovascular protective effects of Huangâ€Qi (Astragali Radix). Medicinal Research Reviews, 2021, 41, 1999-2038.	5.0	77

#	Article	IF	CITATIONS
19	A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: Chemical analysis of a multi-herb Chinese medicine formula as a case study. Journal of Chromatography A, 2021, 1642, 462021.	1.8	14
20	Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry. Molecules, 2021, 26, 4000.	1.7	7
21	Glabrone as a specific UGT1A9 probe substrate and its application in discovering the inhibitor glycycoumarin. European Journal of Pharmaceutical Sciences, 2021, 161, 105786.	1.9	5
22	Chemical modifications of ergostane-type triterpenoids from Antrodia camphorata and their cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128066.	1.0	0
23	Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fìtoterapìâ, 2021, 152, 104935.	1.1	13
24	Discovery of minor quality evaluation marker compounds for Chinese patent medicine products using a two-leveled metabolomics strategy. Journal of Chromatography A, 2021, 1652, 462354.	1.8	3
25	Characterization of a Highly Selective 2″- <i>O</i> -Galactosyltransferase from <i>Trollius chinensis</i> and Structure-Guided Engineering for Improving UDP-Glucose Selectivity. Organic Letters, 2021, 23, 9020-9024.	2.4	12
26	Site-directed mutagenesis and substrate compatibility to reveal the structure–function relationships of plant oxidosqualene cyclases. Natural Product Reports, 2021, 38, 2261-2275.	5.2	14
27	Full Collision Energy Ramp-MS ² Spectrum in Structural Analysis Relying on MS/MS. Analytical Chemistry, 2021, 93, 15381-15389.	3.2	21
28	AChE inhibitory alkaloids from Coptis chinensis. Fìtoterapìâ, 2020, 141, 104464.	1.1	9
29	Antcamphorols A–K, Cytotoxic and ROS Scavenging Triterpenoids from <i>Antrodia camphorata</i> . Journal of Natural Products, 2020, 83, 45-54.	1.5	13
30	Enzymatic O â€Prenylation of Diverse Phenolic Compounds by a Permissive O â€Prenyltransferase from the Medicinal Mushroom Antrodia camphorata. Advanced Synthesis and Catalysis, 2020, 362, 528-532.	2.1	4
31	Chemical constituents from the dish-cultured Antrodia camphorata and their cytotoxic activities. Journal of Asian Natural Products Research, 2020, 23, 1-9.	0.7	1
32	Dissection of the general two-step di- <i>C</i> -glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30816-30823.	3.3	55
33	Targeted characterization of acylated compounds from Scrophulariae Radix using liquid chromatography coupled with Orbitrap mass spectrometry and diagnostic product ionâ€based data analysis. Journal of Separation Science, 2020, 43, 3391-3398.	1.3	6
34	Prenylated Phenolic Compounds from the Aerial Parts of <i>Glycyrrhiza uralensis</i> as PTP1B and α-Glucosidase Inhibitors. Journal of Natural Products, 2020, 83, 814-824.	1.5	30
35	Analysis of curcuminoids and volatile components in 160 batches of turmeric samples in China by high-performance liquid chromatography and gas chromatography mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113465.	1.4	12
36	Functional Characterization and Structural Basis of an Efficient Di- <i>C</i> -glycosyltransferase from <i>Glycyrrhiza glabra</i> . Journal of the American Chemical Society, 2020, 142, 3506-3512.	6.6	76

#	Article	IF	CITATIONS
37	Cytotoxic triterpenoids from <i>Antrodia camphorata</i> as sensitizers of paclitaxel. Organic Chemistry Frontiers, 2020, 7, 768-779.	2.3	9
38	Diversity of <i>O</i> -Glycosyltransferases Contributes to the Biosynthesis of Flavonoid and Triterpenoid Glycosides in <i>Glycyrrhiza uralensis</i> . ACS Synthetic Biology, 2019, 8, 1858-1866.	1.9	43
39	Rapid quantitation and identification of the chemical constituents in Danhong Injection by liquid chromatography coupled with orbitrap mass spectrometry. Journal of Chromatography A, 2019, 1606, 460378.	1.8	22
40	Miro2 Regulates Inter-Mitochondrial Communication in the Heart and Protects Against TAC-Induced Cardiac Dysfunction. Circulation Research, 2019, 125, 728-743.	2.0	27
41	Molecular cloning and biochemical characterization of a new flavonoid glycosyltransferase from the aquatic plant lotus. Biochemical and Biophysical Research Communications, 2019, 510, 315-321.	1.0	8
42	Molecular and Structural Characterization of a Promiscuous <i>C</i> â€Clycosyltransferase from <i>Trollius chinensis</i> . Angewandte Chemie, 2019, 131, 11637-11644.	1.6	14
43	Molecular and Structural Characterization of a Promiscuous <i>C</i> â€Glycosyltransferase from <i>Trollius chinensis</i> . Angewandte Chemie - International Edition, 2019, 58, 11513-11520.	7.2	105
44	Highly Promiscuous Flavonoid 3- <i>O</i> -Glycosyltransferase from <i>Scutellaria baicalensis</i> . Organic Letters, 2019, 21, 2241-2245.	2.4	50
45	Towards takeâ€all control: a Câ€21β oxidase required for acylation of triterpene defence compounds in oat. New Phytologist, 2019, 221, 1544-1555.	3.5	25
46	Antitussive and expectorant activities of licorice and its major compounds. Bioorganic and Medicinal Chemistry, 2018, 26, 278-284.	1.4	76
47	A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of <i>Scutellaria baicalensis</i> . Pharmaceutical Biology, 2018, 56, 465-484.	1.3	230
48	Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from <i>Psoralea corylifolia</i> . Organic and Biomolecular Chemistry, 2018, 16, 6760-6766.	1.5	10
49	A 42-Markers Pharmacokinetic Study Reveals Interactions of Berberine and Glycyrrhizic Acid in the Anti-diabetic Chinese Medicine Formula Gegen-Qinlian Decoction. Frontiers in Pharmacology, 2018, 9, 622.	1.6	26
50	UGT73F17, a new glycosyltransferase from <i>Glycyrrhiza uralensis</i> , catalyzes the regiospecific glycosylation of pentacyclic triterpenoids. Chemical Communications, 2018, 54, 8594-8597.	2.2	34
51	The application of on-line two-dimensional liquid chromatography (2DLC) in the chemical analysis of herbal medicines. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 301-313.	1.4	39
52	Enzymatic glycosylation of oleanane-type triterpenoids. Journal of Asian Natural Products Research, 2018, 20, 615-623.	0.7	14
53	Glycybridins A–K, Bioactive Phenolic Compounds from <i>Glycyrrhiza glabra</i> . Journal of Natural Products, 2017, 80, 334-346.	1.5	71
54	Regio―and Stereospecific <i>O</i> â€Glycosylation of Phenolic Compounds Catalyzed by a Fungal Glycosyltransferase from <i>Mucor hiemalis</i>	2.1	28

#	Article	IF	CITATIONS
55	Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice To Differentiate Medicinal <i>Clycyrrhiza</i> Species and Their Hybrids. Analytical Chemistry, 2017, 89, 3146-3153.	3.2	116
56	Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy. Toxicology and Applied Pharmacology, 2017, 326, 25-33.	1.3	52
57	Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl 4 -induced liver injury in mice. Journal of Ethnopharmacology, 2017, 206, 31-39.	2.0	41
58	Screening for bioactive natural products from a 67-compound library of Clycyrrhiza inflata. Bioorganic and Medicinal Chemistry, 2017, 25, 3706-3713.	1.4	53
59	PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Scientific Reports, 2017, 7, 45379.	1.6	38
60	Enzymatic Synthesis of Bufadienolide <i>O</i> â€Glycosides as Potent Antitumor Agents Using a Microbial Glycosyltransferase. Advanced Synthesis and Catalysis, 2017, 359, 3765-3772.	2.1	24
61	Permeability through the Caco-2 cell monolayer of 42 bioactive compounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 206-213.	1.4	22
62	The prenylated phenolic natural product isoglycycoumarin is a highly selective probe for human cytochrome P450 2A6. European Journal of Pharmaceutical Sciences, 2017, 109, 472-479.	1.9	3
63	Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorganic and Medicinal Chemistry, 2017, 25, 5522-5530.	1.4	47
64	Screening of hepatoprotective compounds from licorice against carbon tetrachloride and acetaminophen induced HepG2 cells injury. Phytomedicine, 2017, 34, 59-66.	2.3	40
65	Compound to Extract to Formulation: a knowledge-transmitting approach for metabolites identification of Gegen-Qinlian Decoction, a traditional Chinese medicine formula. Scientific Reports, 2016, 6, 39534.	1.6	37
66	Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 2016, 1454, 15-25.	1.8	65
67	Efficient and selective glucosylation of prenylated phenolic compounds by Mucor hiemalis. RSC Advances, 2016, 6, 20791-20799.	1.7	11
68	ldentification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharmaceutica Sinica B, 2016, 6, 568-575.	5.7	85
69	Separation and Characterization of Triterpenoid Saponins in Gleditsia sinensis by Comprehensive Two-Dimensional Liquid Chromatography Coupled with Mass Spectrometry. Planta Medica, 2016, 82, 1558-1567.	0.7	13
70	A chemical profiling solution for Chinese medicine formulas using comprehensive and loop-based multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 2016, 1438, 198-204.	1.8	48
71	Bioactive Constituents of <i>Glycyrrhiza uralensis</i> (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. Journal of Natural Products, 2016, 79, 281-292.	1.5	201
72	A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. Journal of Chromatography A, 2016, 1441, 83-95.	1.8	141

#	Article	IF	CITATIONS
73	Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in <i>Curcuma longa</i> as a Case Study. Analytical Chemistry, 2016, 88, 703-710.	3.2	69
74	Characterization of chemical constituents and rats metabolites of an alkaloidal extract of Alstonia scholaris leaves by liquid chromatography coupled with mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1026, 43-55.	1.2	21
75	Biocatalysis of Cycloastragenol by <i>Syncephalastrum racemosum</i> and <i>Alternaria alternata</i> to Discover Antiâ€Aging Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 1928-1940.	2.1	18
76	Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale. Journal of Separation Science, 2015, 38, 3450-3453.	1.3	32
77	Metabolites identification of glycyrin and glycyrol, bioactive coumarins from licorice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 983-984, 39-46.	1.2	23
78	Comprehensive chemical analysis of triterpenoids and polysaccharides in the medicinal mushroom Antrodia cinnamomea. RSC Advances, 2015, 5, 47040-47052.	1.7	23
79	Enantiomeric 3-arylcoumarins and 2-arylcoumarones from the roots of Glycyrrhiza uralensis as protein tyrosine phosphatase 1B (PTP1B) inhibitors. RSC Advances, 2015, 5, 45258-45265.	1.7	10
80	Microbial glycosylation of tanshinone IIA by Cunninghamella elegans AS 3.2028. RSC Advances, 2015, 5, 63753-63756.	1.7	11
81	Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase × reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 2015, 1402, 36-45.	1.8	79
82	Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 266-276.	1.4	37
83	Intestinal Absorption of Ergostane and Lanostane Triterpenoids from Antrodia cinnamomea Using Caco-2 Cell Monolayer Model. Natural Products and Bioprospecting, 2015, 5, 237-246.	2.0	15
84	Metabolites identification of bioactive licorice compounds in rats. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 515-522.	1.4	41
85	Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. Journal of Ethnopharmacology, 2015, 176, 475-484.	2.0	95
86	Simultaneous Determination of Five Minor Coumarins and Flavonoids in Glycyrrhiza uralensis by Solid-Phase Extraction and High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Planta Medica, 2014, 80, 237-242.	0.7	45
87	Comprehensive Chemical Analysis of the Rhizomes of Drynaria fortunei by Orthogonal Pre-Separation and Liquid Chromatography Mass Spectrometry. Planta Medica, 2014, 80, 330-336.	0.7	19
88	Smith degradation, an efficient method for the preparation of cycloastragenol from astragaloside IV. Fìtoterapìâ, 2014, 95, 42-50.	1.1	15
89	Identification of Key Licorice Constituents Which Interact with Cytochrome P450: Evaluation by LC/MS/MS Cocktail Assay and Metabolic Profiling. AAPS Journal, 2014, 16, 101-113.	2.2	48
90	Rapid chemical analysis of bear bile: 5 minute separation and quantitation of bile acids using UHPLC–qTOF-MS. Analytical Methods, 2014, 6, 596-601.	1.3	12

#	Article	IF	CITATIONS
91	Separation of 25R/S-ergostane triterpenoids in the medicinal mushroom Antrodia camphorata using analytical supercritical-fluid chromatography. Journal of Chromatography A, 2014, 1358, 252-260.	1.8	39
92	Chemical analysis of the Tibetan herbal medicine Carduus acanthoides by UPLC/DAD/qTOF-MS and simultaneous determination of nine major compounds. Analytical Methods, 2014, 6, 7181.	1.3	21
93	Separation and detection of minor constituents in herbal medicines using a combination of heart-cutting and comprehensive two-dimensional liquid chromatography. Journal of Chromatography A, 2014, 1362, 157-167.	1.8	57
94	Antcamphins A–L, Ergostanoids from <i>Antrodia camphorata</i> . Journal of Natural Products, 2014, 77, 118-124.	1.5	37
95	Isoangustone A induces apoptosis in SW480 human colorectal adenocarcinoma cells by disrupting mitochondrial functions. Fìtoterapìâ, 2014, 94, 36-47.	1.1	28
96	New triterpene saponins from the roots of Glycyrrhiza yunnanensis and their rapid screening by LC/MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2014, 90, 15-26.	1.4	50
97	Low energy induced homolytic fragmentation of flavonol 3â€ <i>O</i> â€glycosides by negative electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 385-395.	0.7	53
98	Metabolites identification of glycycoumarin, a major bioactive coumarin from licorice in rats. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 287-295.	1.4	26
99	Density Functional Theory Calculations in Stereochemical Determination of Terpecurcumins J–W, Cytotoxic Terpene-Conjugated Curcuminoids from Curcuma longa L Journal of Organic Chemistry, 2013, 78, 11835-11848.	1.7	34
100	HPLC-DAD-MSn analysis and HPLC quantitation of chemical constituents in the traditional Chinese medicine formula Ya-tong-yi-li-wan. Analytical Methods, 2013, 5, 5241.	1.3	6
101	Rapid characterization of chemical constituents and rats metabolites of the traditional Chinese patent medicine Gegen-Qinlian-Wan by UHPLC/DAD/qTOF-MS. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 99-108.	1.4	73
102	Three new phenolic compounds from the roots of Glycyrrhiza yunnanensis. Fìtoterapìâ, 2013, 85, 35-40.	1.1	21
103	Rapid characterisation of flavonoids from <i>Sophora alopecuroides</i> L. by HPLC/DAD/ESI-MS <i>ⁿ</i> . Natural Product Research, 2013, 27, 323-330.	1.0	12
104	Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chemistry, 2013, 139, 762-769.	4.2	52
105	In vivo metabolites and plasma exposure of TongMai Keli analyzed by UHPLC/DAD/qTOF-MS and LC/MS/MS. Journal of Ethnopharmacology, 2013, 145, 509-516.	2.0	8
106	Terpecurcumins A–I from the Rhizomes of <i>Curcuma longa</i> : Absolute Configuration and Cytotoxic Activity. Journal of Natural Products, 2012, 75, 2121-2131.	1.5	42
107	A tandem mass spectrometric study of bile acids: Interpretation of fragmentation pathways and differentiation of steroid isomers. Steroids, 2012, 77, 204-211.	0.8	42
108	Metabolic regulatory effects of licorice: A bile acid metabonomic study by liquid chromatography coupled with tandem mass spectrometry. Steroids, 2012, 77, 745-755.	0.8	22

#	Article	IF	CITATIONS
109	A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Analytica Chimica Acta, 2012, 739, 56-66.	2.6	157
110	Characterization of flavonoids in Millettia nitida var . hirsutissima by HPLC/DAD/ESI-MS n. Journal of Pharmaceutical Analysis, 2012, 2, 35-42.	2.4	76
111	Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. Journal of Chromatography A, 2012, 1258, 84-93.	1.8	90
112	Collision-Induced Dissociation of 40 Flavonoid Aglycones and Differentiation of the Common Flavonoid Subtypes Using Electrospray Ionization Ion-Trap Tandem Mass Spectrometry and Quadrupole Time-of-Flight Mass Spectrometry. European Journal of Mass Spectrometry, 2012, 18, 493-503.	0.5	63
113	Chemical analysis of Eriocaulon buergerianum and adulterating species by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57, 133-142.	1.4	17
114	Metabolic and pharmacokinetic studies of curcumin, demethoxycurcumin and bisdemethoxycurcumin in mice tumor after intragastric administration of nanoparticle formulations by liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2751-2758.	1.2	44
115	Flavan-3-ols from the rhizomes of Drynaria fortunei. Phytochemistry, 2011, 72, 1876-1882.	1.4	17
116	From Single Compounds to Herbal Extract: A Strategy to Systematically Characterize the Metabolites of Licorice in Rats. Drug Metabolism and Disposition, 2011, 39, 1597-1608.	1.7	88
117	Metabolic profiling of GuanXin II prescription based on metabolic fingerprinting and chemical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 789-798.	1.4	16
118	Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: Simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry. Journal of Chromatography A, 2011, 1218, 107-117.	1.8	70
119	Qualitative and Quantitative Analyses of Flavonoids in <i>Spirodela polyrrhiza</i> by Highâ€performance Liquid Chromatography Coupled with Mass Spectrometry. Phytochemical Analysis, 2011, 22, 475-483.	1.2	72
120	Retention behaviors of natural products in reversedâ€phase liquid chromatography using mobile phase comprising methanol, acetonitrile and water. Journal of Separation Science, 2011, 34, 169-175.	1.3	11
121	Extraction, Separation, Detection, and Structural Analysis of Flavonoids. Current Organic Chemistry, 2011, 15, 2541-2566.	0.9	23
122	Chemical fingerprint of commercial <i>Radix Echinopsis</i> and quantitative analysis of αâ€ŧerthienyl. Journal of Separation Science, 2010, 33, 530-538.	1.3	9
123	Rapid characterization of triterpene saponins from Conyza blinii by liquid chromatography coupled with mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 3340-3350.	0.7	27
124	Analysis of Chemical Constituents and Taxonomic Similarity of <i>Salvia</i> Species in China Using LC/MS. Planta Medica, 2009, 75, 1613-1617.	0.7	15
125	Metabolic analysis of four phenolic acids in rat by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 7-14.	1.2	49
126	Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 516-525.	1.4	138

#	Article	IF	CITATIONS
127	Comparison of Phenolic Compounds of Rhubarbs in the Section <i>Deserticola</i> with <i>Rheum palmatum</i> by HPLC-DAD-ESI-MS ⁿ . Planta Medica, 2008, 74, 873-879.	0.7	29
128	Characterization of Chemical Constituents in Guan Xin II Decoction by Liquid Chromatography Coupled with Electrospray Ionization-Mass Spectrometry. Planta Medica, 2008, 74, 1720-1729.	0.7	11
129	HPLC method for comparative study on tissue distribution in rat after oral administration of salvianolic acid B and phenolic acids fromSalvia miltiorrhiza. Biomedical Chromatography, 2007, 21, 1052-1063.	0.8	20
130	Structural characterization of metabolites of salvianolic acid B from Salvia miltiorrhiza in normal and antibiotic-treated rats by liquid chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 858, 184-198.	1.2	38