Elizabeth R Stanway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6592588/publications.pdf

Version: 2024-02-01

81900 74163 6,028 118 39 75 citations g-index h-index papers 119 119 119 4998 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Gravitational-wave Optical Transient Observer (GOTO): prototype performance and prospects for transient science. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2405-2422.	4.4	18
2	Forward modelling the O3(a+b) GW transient mass distributions with <scp>bpass</scp> by varying compact remnant mass and SNe kick prescriptions. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1201-1209.	4.4	9
3	The dependence of theoretical synthetic spectra on α-enhancement in young, binary stellar populations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5329-5338.	4.4	18
4	Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3550-3563.	4.4	8
5	Estimating transient rates from cosmological simulations and BPASS. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1315-1334.	4.4	25
6	On the simultaneous modelling of dust and stellar populations for interpretation of galaxy properties. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5706-5724.	4.4	6
7	New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies. Annual Review of Astronomy and Astrophysics, 2022, 60, 455-494.	24.3	21
8	Processing GOTO survey data with the Rubin Observatory LSST Science Pipelines II: Forced Photometry and lightcurves. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	1
9	Transient-optimized real-bogus classification with Bayesian convolutional neural networks – sifting the GOTO candidate stream. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4838-4854.	4.4	19
10	Light-curve classification with recurrent neural networks for GOTO: dealing with imbalanced data. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4345-4361.	4.4	17
11	Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy, 2021, 52, 219-244.	3.7	12
12	Binary evolution pathways of blue large-amplitude pulsators. Monthly Notices of the Royal Astronomical Society, 2021, 507, 621-631.	4.4	15
13	Searching for <i>Fermi</i> GRB optical counterparts with the prototype Gravitational-wave Optical Transient Observer (GOTO). Monthly Notices of the Royal Astronomical Society, 2021, 507, 5463-5476.	4.4	3
14	Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	1
15	Testing Evolutionary Models with Red Supergiant and Wolf–Rayet Populations. Astrophysical Journal, 2021, 922, 177.	4.5	20
16	Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4). Monthly Notices of the Royal Astronomical Society, 2020, 497, 726-738.	4.4	68
17	Machine learning for transient recognition in difference imaging with minimum sampling effort. Monthly Notices of the Royal Astronomical Society, 2020, 499, 6009-6017.	4.4	9
18	Evaluating the impact of binary parameter uncertainty on stellar population properties. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4605-4621.	4.4	19

#	Article	IF	Citations
19	Weighing in on black hole binaries with bpass: LB-1 does not contain a 70 M⊙ black hole. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2786-2795.	4.4	34
20	Binary fraction indicators in resolved stellar populations and supernova-type ratios. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2201-2212.	4.4	9
21	A systematic ageing method I: H ii regions D118 and D119 in NGC 300. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1347-1363.	4.4	7
22	Applications of Stellar Population Synthesis in the Distant Universe. Galaxies, 2020, 8, 6.	3.0	5
23	Binary population synthesis models for core-collapse gamma-ray burst progenitors. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3479-3495.	4.4	36
24	Dependence of gravitational wave transient rates on cosmic star formation and metallicity evolution history. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L6-L10.	3.3	48
25	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70
26	Hoki: Making BPASS accessible through Python. Journal of Open Source Software, 2020, 5, 1987.	4.6	36
27	The case for a high-redshift origin of GRB 100205A. Monthly Notices of the Royal Astronomical Society, 2019, 488, 902-909.	4.4	3
28	Supernova lightCURVE POPulation Synthesis II: Validation against supernovae with an observed progenitor. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	20
29	Recalibrating the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5359-5365.	4.4	29
30	Initial mass function variations cannot explain the ionizing spectrum of low metallicity starbursts. Astronomy and Astrophysics, 2019, 621, A105.	5.1	44
31	The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5380-5408.	4.4	43
32	Chandra and Hubble Space Telescope observations of dark gamma-ray bursts and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3105-3117.	4.4	7
33	Core-collapse supernovae ages and metallicities from emission-line diagnostics of nearby stellar populations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 384-401.	4.4	29
34	Interpreting galaxy properties with improved modelling. Proceedings of the International Astronomical Union, 2019, 15, 84-97.	0.0	1
35	Comparison of Theoretical Starburst Photoionization Models for Optical Diagnostics. Astrophysical Journal, 2019, 878, 2.	4.5	18
36	A consistent estimate for gravitational wave and electromagnetic transient rates. Monthly Notices of the Royal Astronomical Society, 2019, 482, 870-880.	4.4	86

#	Article	IF	Citations
37	Exploring the cosmic evolution of habitability with galaxy merger trees. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1829-1842.	4.4	10
38	Investigating the diversity of supernovae type lax: a MUSE and NOT spectroscopic study of their environments. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1359-1387.	4.4	40
39	Infrared molecular hydrogen lines in GRB host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1126-1132.	4.4	4
40	Investigating a population of infrared-bright gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2-27.	4.4	15
41	The utility of Ly α emission lines as a probe of interactions between high redshift galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1938-1949.	4.4	6
42	The Properties of GRB 120923A at a Spectroscopic Redshift of zÂâ‰^Â7.8. Astrophysical Journal, 2018, 865, 107.	4.5	23
43	Supernova lightCURVE POPulation Synthesis I: Including interacting binaries is key to understanding the diversity of type II supernova lightcurves. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	35
44	The second-closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar metallicity environment. Astronomy and Astrophysics, 2018, 616, A169.	5.1	36
45	Emission-line diagnostics of core-collapse supernova host HII regions including interacting binary population. Proceedings of the International Astronomical Union, 2018, 14, 342-343.	0.0	0
46	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
47	The optical afterglow of the short gamma-ray burst associated with GW170817. Nature Astronomy, 2018, 2, 751-754.	10.1	185
48	VLA radio observations of AR Scorpii. Astronomy and Astrophysics, 2018, 611, A66.	5.1	15
49	Re-evaluating old stellar populations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 75-93.	4.4	298
50	Emission-line diagnostics of nearby H ii regions including interacting binary populations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 904-934.	4.4	89
51	On the Chirp Mass Distribution of Stellar Origin Gravitational-wave Events. Research Notes of the AAS, 2018, 2, 236.	0.7	1
52	The Environment of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 848, L28.	8.3	114
53	No evidence for Population III stars or a direct collapse black hole in the zÂ=Â6.6 Lyman α emitter â€~CR7' Monthly Notices of the Royal Astronomical Society, 2017, 469, 448-458.	м 4.4	46
54	Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	600

#	Article	IF	CITATIONS
55	Radio observations confirm young stellar populations in local analogues to zÂâ^1/4Â5 Lyman break galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 489-499.	4.4	5
56	Late-time observations of the relativistic tidal disruption flare candidate Swift J1112.2â^8238. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4469-4479.	4.4	17
57	Towards the origin of the radio emission in AR Scorpii, the first radio-pulsing white dwarf binary. Astronomy and Astrophysics, 2017, 601, L7.	5.1	13
58	Physical properties of local star-forming analogues to <i>z</i> $\hat{A}\hat{a}^{-1}/4\hat{A}$ 5 Lyman-break galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2591-2602.	4.4	15
59	bpass predictions for binary black hole mergers. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3302-3313.	4.4	197
60	A radio-pulsing white dwarf binary star. Nature, 2016, 537, 374-377.	27.8	117
61	DETECTION OF THREE GAMMA-RAY BURST HOST GALAXIES AT z â^1/4 6. Astrophysical Journal, 2016, 825, 135.	4.5	29
62	Emission-line Diagnostics of Nearby HII Regions Including Supernova Hosts. Proceedings of the International Astronomical Union, 2016, 12, 49-53.	0.0	0
63	What can distant galaxies teach us about massive stars?. Proceedings of the International Astronomical Union, 2016, 12, 305-312.	0.0	1
64	Binary Population and Spectral Synthesis. Proceedings of the International Astronomical Union, 2016, 12, 396-396.	0.0	0
65	LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION. Astrophysical Journal, 2016, 819, 51.	4.5	30
66	Stellar population effects on the inferred photon density at reionization. Monthly Notices of the Royal Astronomical Society, 2016, 456, 485-499.	4.4	270
67	A <i>Hubble Space Telescope</i> survey of the host galaxies of Superluminous Supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 84-104.	4.4	83
68	The photometric properties of galaxies in the early Universe. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3170-3178.	4.4	31
69	The Lyman-continuum photon production efficiency in the high-redshift Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L6-L9.	3.3	49
70	Exploring the dawn of galaxies. Astronomy and Geophysics, 2015, 56, 3.21-3.24.	0.2	0
71	Dissecting the complex environment of a distant quasar with MUSE. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2388-2395.	4.4	15
72	A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB 080517. Astrophysical Journal Letters, 2015, 798, L7.	8.3	24

#	Article	IF	Citations
73	Swift J1112.2â^'8238: a candidate relativistic tidal disruption flare. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4297-4306.	4.4	102
74	ALMA OBSERVATIONS OF THE HOST GALAXY OF GRB 090423 AT <i>z</i> = 8.23: DEEP LIMITS ON OBSCURED STAR FORMATION 630 MILLION YEARS AFTER THE BIG BANG. Astrophysical Journal, 2014, 796, 96.	4.5	14
75	Spectroscopy of z â^1⁄4 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universeâ~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 2831-2842.	4.4	126
76	Interpreting high [O iii]/H β ratios with maturing starbursts. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3466-3472.	4.4	51
77	Establishing an analogue population for the most distant galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2474-2484.	4.4	13
78	GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at $z=0.09$. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3911-3925.	4.4	40
79	Radio observations of GRB host galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2133-2146.	4.4	15
80	Identifying clustering at high redshift through actively star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2732-2752.	4.4	3
81	High-redshift galaxies and low-mass stars. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1038-1050.	4.4	26
82	Constraining the bright-end of the UV luminosity function for z â‰^7–9 galaxies: results from CANDELS/GOODS-South. Monthly Notices of the Royal Astronomical Society, 2013, 429, 150-158.	4.4	35
83	Distant galaxy clusters in the XMM Large Scale Structure survey. Monthly Notices of the Royal Astronomical Society, 2013, 430, 134-156.	4.4	45
84	The detection of FIR emission from high-redshift star-forming galaxies in the ECDF-S. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2588-2603.	4.4	17
85	Are z $\hat{a}^{1}/4$ 5 quasars found in the most massive high-redshift overdensities? \hat{a} Monthly Notices of the Royal Astronomical Society, 2013, 432, 2869-2877.	4.4	54
86	VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman $\hat{l}\pm$ emission at $z\hat{A}=8.55\hat{a}^2$ Monthly Notices of the Royal Astronomical Society, 2013, 430, 3314-3319.	4.4	19
87	STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG. Astrophysical Journal, 2012, 754, 46.	4.5	104
88	No evidence for Lyman \hat{A} emission in spectroscopy of z > 7 candidate galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3055-3070.	4.4	73
89	The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C iv and He ii in high-redshift Lyman-break galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 419, 479-489.	4.4	122
90	Limits on dust emission from $z\hat{a}^4$ 5 LBGs and their local environments. Monthly Notices of the Royal Astronomical Society, 2012, 425, 153-161.	4.4	8

#	Article	IF	Citations
91	Star-forming galaxies at zâ‰^ 8-9 from Hubble Space Telescope/WFC3: implications for reionization. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1455-1466.	4.4	62
92	The ultraviolet properties of star-forming galaxies - I. HST WFC3 observations of very high redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 717-729.	4.4	105
93	Constraining the thermal dust content of Lyman break galaxies in an overdense field at <i>z</i> ≈5. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 407, L94-L98.	3.3	8
94	Limits on the molecular gas content of $\langle i \rangle z \langle i \rangle$ â ¹ / ₄ 5 LBGs. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 408, L31-L35.	3. 3	10
95	Spectroscopy of $z\hat{a}^{1/4}$ 5 Lyman break galaxies in the ESO Remote Galaxy Survey. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1155-1171.	4.4	27
96	Constraining the molecular gas in the environs of a $z\hat{a}^{1}/4$ 8 gamma-ray burst host galaxy. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	9
97	Low radio-derived star formation rates in <i>z</i> & amp;lt; 0.5 gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L74-L78.	3.3	20
98	Photometric selection of $\langle i \rangle z \langle i \rangle i \langle 1/2 i \langle 1/2 i \rangle 1/$	4.4	16
99	Spectral population synthesis including massive binaries. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1019-1028.	4.4	259
100	M dwarfs at large heliocentric distances. Monthly Notices of the Royal Astronomical Society, 2008, 384, 348-360.	4.4	13
101	A limit on the number density of bright <i>z</i> \hat{A} \hat{A} \hat{A} \hat{A} galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 386, 370-376.	4.4	20
102	Large-Scale Structure Traced by Molecular Gas at High Redshift. Astrophysical Journal, 2008, 687, L1-L4.	4.5	10
103	The stellar mass density at z 6 from Spitzer imaging of i'-drop galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 374, 910-930.	4.4	116
104	The GLARE Survey – II. Faint zâ‰^6 Lyα line emitters in the HUDF. Monthly Notices of the Royal Astronomical Society, 2007, 376, 727-738.	4.4	66
105	Discovery of a single faint AGN in a large sample of $z > 5$ Lyman break galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1393-1398.	4.4	16
106	Galaxies in the first billion years: implications for re-ionization and the star formation history at z>6. Proceedings of the International Astronomical Union, 2006, 2, 248-248.	0.0	0
107	Star forming galaxies at zâ‰^6 and reionization. New Astronomy Reviews, 2006, 50, 94-100.	12.8	20
108	Near-infrared properties ofi-drop galaxies in the Hubble Ultra Deep Field. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1184-1192.	4.4	115

#	Article	IF	CITATION
109	Spitzer imaging of i′-drop galaxies: old stars at z≈ 6. Monthly Notices of the Royal Astronomical Society, 2005, 364, 443-454.	4.4	111
110	Three Ly Emitters at z 6: Early GMOS/Gemini Data from the GLARE Project. Astrophysical Journal, 2004, 604, L13-L16.	4.5	90
111	The star formation rate of the Universe atzâ‰^6 from theHubble Ultra-Deep Field. Monthly Notices of the Royal Astronomical Society, 2004, 355, 374-384.	4.4	240
112	Hubble Space Telescopelmaging and Keck Spectroscopy ofzâ‰^ 6iâ€Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields. Astrophysical Journal, 2004, 607, 704-720.	4.5	122
113	Photometric redshifts for an optical/near-infrared catalogue in the Chandra Deep Field South. Astrophysics and Space Science, 2003, 284, 381-384.	1.4	2
114	Lyman break galaxies and the star formation rate of the Universe at z 6. Monthly Notices of the Royal Astronomical Society, 2003, 342, 439-445.	4.4	156
115	A star-forming galaxy atz= 5.78 in theChandraDeep Field South. Monthly Notices of the Royal Astronomical Society, 2003, 342, L47-L51.	4.4	88
116	On contamination and completeness in z≥ 5 Lyman-break galaxy surveys. Monthly Notices of the Royal Astronomical Society, 0, 385, 493-510.	4.4	33
117	Probing â^¼L* Lyman-break galaxies at zâ‰^ 7 in GOODS-South with WFC3 on Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 0, 403, 938-944.	4.4	64
118	Towards an understanding of long gamma-ray burst environments through circumstellar medium population synthesis predictions. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	3