Wenhao Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6591883/publications.pdf Version: 2024-02-01

WENHAO REN

#	Article	lF	CITATIONS
1	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 6972-6976.	13.8	707
2	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	12.8	370
3	Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nature Catalysis, 2022, 5, 268-276.	34.4	248
4	Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy, 2016, 25, 145-153.	16.0	230
5	Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. Nano Letters, 2017, 17, 4713-4718.	9.1	225
6	Defectâ€Rich Soft Carbon Porous Nanosheets for Fast and Highâ€Capacity Sodiumâ€Ion Storage. Advanced Energy Materials, 2019, 9, 1803260.	19.5	214
7	Alkaline earth metal vanadates as sodium-ion battery anodes. Nature Communications, 2017, 8, 460.	12.8	136
8	Ultrafast Aqueous Potassiumâ€lon Batteries Cathode for Stable Intermittent Gridâ€Scale Energy Storage. Advanced Energy Materials, 2018, 8, 1801413.	19.5	136
9	Prussian White Hierarchical Nanotubes with Surfaceâ€Controlled Charge Storage for Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806405.	14.9	124
10	Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications, 2021, 12, 1449.	12.8	119
11	Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 3999-4007.	8.0	98
12	Sulfurâ€Dopantâ€Promoted Electroreduction of CO ₂ over Coordinatively Unsaturated Niâ€N ₂ Moieties. Angewandte Chemie - International Edition, 2021, 60, 23342-23348.	13.8	98
13	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy, 2016, 28, 216-223.	16.0	97
14	Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 21493-21498.	13.8	97
15	Emerging Prototype Sodium″on Full Cells with Nanostructured Electrode Materials. Small, 2017, 13, 1604181.	10.0	96
16	Nitrogen Vacancy Induced Coordinative Reconstruction of Singleâ€Atom Ni Catalyst for Efficient Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2107072.	14.9	89
17	Phosphorus Enhanced Intermolecular Interactions of SnO ₂ and Graphene as an Ultrastable Lithium Battery Anode. Small, 2017, 13, 1603973.	10.0	87
18	Realizing Superior Prussian Blue Positive Electrode for Potassium Storage via Ultrathin Nanosheet Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 11564-11570.	6.7	87

Wenhao Ren

#	Article	IF	CITATIONS
19	Nonhierarchical Heterostructured Fe ₂ O ₃ /Mn ₂ O ₃ Porous Hollow Spheres for Enhanced Lithium Storage. Small, 2018, 14, e1800659.	10.0	83
20	Acetylene Black Induced Heterogeneous Growth of Macroporous CoV ₂ O ₆ Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 7139-7146.	8.0	81
21	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. Advanced Energy Materials, 2017, 7, 1601582.	19.5	73
22	3.0 V High Energy Density Symmetric Sodium-lon Battery: Na ₄ V ₂ (PO ₄) ₃ â^¥Na ₃ V ₂ (PO _{ ACS Applied Materials & Interfaces, 2018, 10, 10022-10028.}	>4 s/s ub>)∙	<sab>3</s
23	Carbon-based catalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2019, 3, 2890-2906.	4.9	67
24	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie, 2019, 131, 7046-7050.	2.0	65
25	An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. Journal of Materials Chemistry A, 2015, 3, 19850-19856.	10.3	61
26	Ultrahigh Areal Capacity Hydrogenâ€lon Batteries with MoO ₃ Loading Over 90 mg cm ^{â^'2} . Advanced Functional Materials, 2020, 30, 2005477.	14.9	57
27	Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energyâ€Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
28	Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO ₂ in Aqueous Electrolytes. ACS Catalysis, 2020, 10, 13171-13178.	11.2	54
29	Metal–Sulfur Linkages Achieved by Organic Tethering of Ruthenium Nanocrystals for Enhanced Electrochemical Nitrogen Reduction. Angewandte Chemie - International Edition, 2020, 59, 21465-21469.	13.8	52
30	Synergistic bimetallic CoFe ₂ O ₄ clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chemical Communications, 2019, 55, 12184-12187.	4.1	50
31	Paths towards enhanced electrochemical CO2 reduction. National Science Review, 2020, 7, 7-9.	9.5	47
32	(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 6003-6010.	6.7	45
33	Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chemical Communications, 2020, 56, 11803-11806.	4.1	43
34	Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis. Inorganic Chemistry, 2020, 59, 12437-12444.	4.0	40
35	Two-Phase Electrochemical Proton Transport and Storage in α-MoO3 for Proton Batteries. Cell Reports Physical Science, 2020, 1, 100225.	5.6	40
36	Nanostructured amalgams with tuneable silver–mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. Journal of Materials Chemistry A, 2019, 7, 15907-15912.	10.3	37

Wenhao Ren

#	Article	IF	CITATIONS
37	Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 21677-21682.	2.0	37
38	"Waterâ€inâ€Sugar―Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage. Small, 2021, 17, e2102375.	10.0	33
39	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	16.0	31
40	Thermally Activated Multilayered Carbon Cloth as Flexible Supercapacitor Electrode Material with Significantly Enhanced Areal Energy Density. ChemElectroChem, 2019, 6, 1768-1775.	3.4	31
41	Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids. Applied Catalysis B: Environmental, 2022, 304, 120963.	20.2	29
42	Novel layered Li ₃ V ₂ (PO ₄) ₃ /rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chemical Communications, 2016, 52, 8730-8732.	4.1	27
43	Shock Exfoliation of Graphene Fluoride in Microwave. Small, 2020, 16, e1903397.	10.0	20
44	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	14.9	18
45	In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram. Chemistry of Materials, 2017, 29, 8057-8064.	6.7	18
46	Gram-scale synthesis of single-atom metal–N–CNT catalysts for highly efficient CO ₂ electroreduction. Chemical Communications, 2021, 57, 1514-1517.	4.1	15
47	Microwave-assisted shock synthesis of diverse ultrathin graphene-derived materials. Materials Chemistry Frontiers, 2019, 3, 1433-1439.	5.9	13
48	Sulfurâ€Dopantâ€Promoted Electroreduction of CO 2 over Coordinatively Unsaturated Niâ€N 2 Moieties. Angewandte Chemie, 0, , .	2.0	9
49	Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energyâ€Efficient CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	2.0	9
50	Flash-assisted doping graphene for ultrafast potassium transport. Nano Research, 2022, 15, 4083-4090.	10.4	6
51	Metal–Sulfur Linkages Achieved by Organic Tethering of Ruthenium Nanocrystals for Enhanced Electrochemical Nitrogen Reduction. Angewandte Chemie, 2020, 132, 21649-21653.	2.0	3
52	Atom probe specimen preparation methods for nanoparticles. Ultramicroscopy, 2022, 233, 113420.	1.9	2
53	Cycling-Stable Cathodes: The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions (Adv. Funct. Mater. 36/2016). Advanced Functional Materials, 2016, 26, 6498-6498.	14.9	0