Brian A Lanman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6591611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a Covalent Inhibitor of KRAS ^{G12C} (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 2020, 63, 52-65.	6.4	403
2	Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127499.	2.2	7
3	Discovery of <i>N</i> -(1-Acryloylazetidin-3-yl)-2-(1 <i>H</i> -indol-1-yl)acetamides as Covalent Inhibitors of KRAS ^{G12C} . ACS Medicinal Chemistry Letters, 2019, 10, 1302-1308.	2.8	66
4	The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575, 217-223.	27.8	1,375
5	Discovery of (<i>R</i>)-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- <i>b</i>]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-m a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies. Journal of Medicinal Chemistry, 2019, 62, 1523-1540.	ethylcyclo .4	propyl)amino
6	Abstract 4455: Discovery of AMG 510, a first-in-human covalent inhibitor of KRASG12Cfor the treatment of solid tumors. , 2019, , .		4
7	Abstract 3090: <i>In vivo</i> characterization of AMG 510 - a potent and selective KRAS ^{G12C} covalent small molecule inhibitor in preclinical KRAS ^{G12C} cancer models. , 2019, , .		1
8	Abstract 4484: Discovery and in vitro characterization of AMG 510–a potent and selective covalent small-molecule inhibitor of KRAS ^{G12C} ., 2019,,.		1
9	Addressing supply issues for natural products in the clinic. Science, 2017, 358, 166-167.	12.6	3
10	Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 6407-6430.	6.4	33
11	Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 408-412.	2.8	22
12	The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 847-855.	2.2	22
13	Discovery of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines as potent PIM inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 775-780.	2.2	26
14	The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 834-840.	2.2	28
15	Phosphoinositide-3-kinase inhibitors: Evaluation of substituted alcohols as replacements for the piperazine sulfonamide portion of AMG 511. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5630-5634.	2.2	4
16	Selective Class I Phosphoinositide 3-Kinase Inhibitors: Optimization of a Series of Pyridyltriazines Leading to the Identification of a Clinical Candidate, AMG 511. Journal of Medicinal Chemistry, 2012, 55, 7796-7816.	6.4	42
17	Optimization of a Potent, Orally Active S1P ₁ Agonist Containing a Quinolinone Core. ACS Medicinal Chemistry Letters, 2012, 3, 74-78.	2.8	16
18	Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases. Journal of Medicinal Chemistry, 2012, 55, 5188-5219.	6.4	43

BRIAN A LANMAN

#	Article	IF	CITATIONS
19	Novel 5- and 6-subtituted benzothiazoles with improved physicochemical properties: Potent S1P1 agonists with in vivo lymphocyte-depleting activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 628-633.	2.2	9
20	Quinolinone-based agonists of S1P1: Use of a N-scan SAR strategy to optimize in vitro and in vivo activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 527-531.	2.2	15
21	Isoform-selective thiazolo[5,4-b]pyridine S1P1 agonists possessing acyclic amino carboxylate head-groups. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1779-1783.	2.2	8
22	Discovery of AMG 369, a Thiazolo[5,4- <i>b</i>]pyridine Agonist of S1P ₁ and S1P ₅ . ACS Medicinal Chemistry Letters, 2011, 2, 107-112.	2.8	51
23	4-Methoxy- <i>N</i> -[2-(trifluoromethyl)biphenyl-4-ylcarbamoyl]nicotinamide: A Potent and Selective Agonist of S1P ₁ . ACS Medicinal Chemistry Letters, 2011, 2, 752-757.	2.8	20
24	Discovery of a Potent, S1P ₃ -Sparing Benzothiazole Agonist of Sphingosine-1-Phosphate Receptor 1 (S1P ₁). ACS Medicinal Chemistry Letters, 2011, 2, 102-106.	2.8	19
25	On the Structure of Palau'amine:Â Evidence for the Revised Relative Configuration from Chemical Synthesis. Journal of the American Chemical Society, 2007, 129, 12896-12900.	13.7	73
26	Evaluation of Strategies for the Synthesis of the Guanidine Hemiaminal Portion of Palau'amine. Heterocycles, 2006, 70, 557.	0.7	22
27	Efficient, Stereoselective Synthesis of trans-2,5-Disubstituted Morpholines ChemInform, 2004, 35, no.	0.0	0
28	Efficient, Stereoselective Synthesis oftrans-2,5-Disubstituted Morpholines. Organic Letters, 2004, 6, 1045-1047.	4.6	65
29	A Solid-Supported, Enantioselective Synthesis Suitable for the Rapid Preparation of Large Numbers of Diverse Structural Analogues of (â^)-Saframycin A. Journal of the American Chemical Society, 2002, 124, 12969-12971.	13.7	66
30	Synthesis of highly epimerizable N-protected α-amino aldehydes of high enantiomeric excess. Tetrahedron Letters, 2000, 41, 1359-1362.	1.4	98
31	Synthesis of C-Protected α-Amino Aldehydes of High Enantiomeric Excess from Highly Epimerizable N-Protected α-Amino Aldehydes. Organic Letters, 2000, 2, 3337-3340.	4.6	23