
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6591350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	12.6	3,803
2	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	19.5	369
3	Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano, 2018, 12, 2027-2034.	14.6	353
4	Morphological and Electronic Tuning of Ni ₂ P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis, 2019, 9, 8882-8892.	11.2	227
5	Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy and Environmental Science, 2018, 11, 2114-2123.	30.8	224
6	Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Materials, 2019, 18, 246-252.	18.0	203
7	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammonia–Borane. Angewandte Chemie - International Edition, 2016, 55, 11950-11954.	13.8	186
8	Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Underâ€Coordinated Metal Centers for Accelerated Water Dissociation. Advanced Materials, 2020, 32, e2006784.	21.0	186
9	Pt-O bond as an active site superior to PtO in hydrogen evolution reaction. Nature Communications, 2020, 11, 490.	12.8	184
10	Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777.	13.8	182
11	Weakening hydrogen adsorption on nickel <i>via</i> interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy and Environmental Science, 2019, 12, 3522-3529.	30.8	177
12	Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 2018, 1, 663-672.	4.6	143
13	Boosting Hydrogen Transfer during Volmer Reaction at Oxides/Metal Nanocomposites for Efficient Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 3002-3010.	17.4	142
14	Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. Journal of Materials Chemistry A, 2014, 2, 2491.	10.3	128
15	Thin-Layer Fe ₂ TiO ₅ on Hematite for Efficient Solar Water Oxidation. ACS Nano, 2015, 9, 5348-5356.	14.6	121
16	Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon, 2012, 50, 335-338.	10.3	111
17	Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy and Environmental Science, 2013, 6, 1965.	30.8	111
18	Ti-doped hematite nanostructures for solar water splitting with high efficiency. Journal of Applied Physics, 2012, 112, .	2.5	106

#	Article	IF	CITATIONS
19	Rational Synthesis and Assembly of Ni ₃ S ₄ Nanorods for Enhanced Electrochemical Sodium-Ion Storage. ACS Nano, 2018, 12, 1829-1836.	14.6	104
20	U ₂ @ <i>I</i> _{<i>h</i>} (7)-C ₈₀ : Crystallographic Characterization of a Long-Sought Dimetallic Actinide Endohedral Fullerene. Journal of the American Chemical Society, 2018, 140, 3907-3915.	13.7	96
21	Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation. Journal of Materials Chemistry A, 2014, 2, 6727.	10.3	87
22	Mega High Utilization of Sodium Metal Anodes Enabled by Single Zinc Atom Sites. Nano Letters, 2019, 19, 7827-7835.	9.1	86
23	Synchrotron Soft Xâ€ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 2014, 26, 7786-7806.	21.0	84
24	Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes. ACS Nano, 2018, 12, 8625-8632.	14.6	76
25	A CO ₂ adsorption dominated carbon defect-based electrocatalyst for efficient carbon dioxide reduction. Journal of Materials Chemistry A, 2020, 8, 1205-1211.	10.3	75
26	Highly Efficient Oxygen Evolution by a Thermocatalytic Process Cascaded Electrocatalysis Over Sulfurâ€Treated Feâ€Based Metal–Organicâ€Frameworks. Advanced Energy Materials, 2020, 10, 2000184.	19.5	75
27	Carbon-coated α-Fe ₂ O ₃ nanostructures for efficient anode of Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 5183-5188.	10.3	67
28	Lowering the Onset Potential of Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanodes by Interface Structures: F- and Rh-Based Treatments. ACS Catalysis, 2017, 7, 4062-4069.	11.2	61
29	Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation. Physical Chemistry Chemical Physics, 2016, 18, 10453-10458.	2.8	55
30	Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorineâ€Đoped FeOOH and FeNiOOH as Dual Cocatalysts. ChemSusChem, 2018, 11, 3783-3789.	6.8	54
31	Blue Energy Collection toward Allâ€Hours Selfâ€Powered Chemical Energy Conversion. Advanced Energy Materials, 2020, 10, 2001041.	19.5	54
32	Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters, 2020, 5, 975-993.	17.4	52
33	Single-cluster Au as an usher for deeply cyclable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 14496-14503.	10.3	51
34	Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting. Nano Energy, 2017, 32, 526-532.	16.0	50
35	Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 553-559.	6.7	48
36	Single atoms or not? The limitation of EXAFS. Applied Physics Letters, 2020, 116, .	3.3	46

#	Article	IF	CITATIONS
37	Carbon Defect-Induced Reversible Carbon–Oxygen Interfaces for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 39735-39744.	8.0	45
38	Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light. Nanoscale, 2018, 10, 2454-2460.	5.6	43
39	Carbon coated bimetallic sulfide nanodots/carbon nanorod heterostructure enabling long-life lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 25625-25631.	10.3	41
40	Cube-like CuCoO nanostructures on reduced graphene oxide for H ₂ generation from ammonia borane. Inorganic Chemistry Frontiers, 2018, 5, 1180-1187.	6.0	39
41	Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane. Nanoscale, 2015, 7, 9715-9722.	5.6	38
42	Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841.	2.0	37
43	A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy, 2022, 93, 106870.	16.0	37
44	Improved Water Oxidation of Fe ₂ O ₃ /Fe ₂ TiO ₅ Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer. ACS Catalysis, 2022, 12, 7833-7842.	11.2	36
45	Highly efficient CoNiP nanoboxes on graphene oxide for the hydrolysis of ammonia borane. Chemical Engineering Journal, 2022, 428, 131219.	12.7	35
46	Revealing Hydrogen Evolution Performance of Single-Atom Platinum Electrocatalyst with Polyoxometalate Molecular Models. ACS Energy Letters, 2021, 6, 4055-4062.	17.4	35
47	Crystal Splintering of β-MnO ₂ Induced by Interstitial Ru Doping Toward Reversible Oxygen Conversion. Chemistry of Materials, 2021, 33, 4135-4145.	6.7	34
48	Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy, 2018, 53, 483-491.	16.0	31
49	S-Doped Ni(OH) ₂ nano-electrocatalyst confined in semiconductor zeolite with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2020, 8, 11255-11260.	10.3	31
50	Hybridized Mechanical and Solar Energy-Driven Self-Powered Hydrogen Production. Nano-Micro Letters, 2020, 12, 88.	27.0	31
51	C–O ^{â^'} –K ⁺ (Na ⁺) groups in non-doped carbon as active sites for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8955-8961.	10.3	28
52	Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Applied Catalysis B: Environmental, 2019, 258, 117962.	20.2	28
53	Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conductive pathways and catalytic M-N4S sites for accelerated Li-S kinetics. Journal of Energy Chemistry, 2021, 61, 170-178.	12.9	28
54	Multi-ion Modulated Single-Step Synthesis of a Nanocarbon Embedded with a Defect-Rich Nanoparticle Catalyst for a High Loading Sulfur Cathode. ACS Applied Materials & Interfaces, 2020, 12, 12727-12735.	8.0	27

#	Article	IF	CITATIONS
55	Boron-passivated surface Fe ^(iv) defects in hematite for highly efficient water oxidation. Nanoscale, 2018, 10, 7033-7039.	5.6	25
56	Photocharged Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanode for Enhanced Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 29268-29273.	3.1	24
57	Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study. ACS Applied Materials & Interfaces, 2015, 7, 7863-7868.	8.0	23
58	Pt _x Ni _{10â^'x} O nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane. Catalysis Science and Technology, 2017, 7, 5135-5142.	4.1	23
59	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammonia–Borane. Angewandte Chemie, 2016, 128, 12129-12133.	2.0	22
60	Hybrid CuCoO–GO enables ultrasensitive detection of antibiotics with enhanced laser desorption/ionization at nano-interfaces. Chemical Science, 2019, 10, 257-267.	7.4	19
61	Homogenizing Li ₂ CO ₃ Nucleation and Growth through High-Density Single-Atomic Ru Loading toward Reversible Li-CO ₂ Reaction. ACS Applied Materials & Interfaces, 2022, 14, 18561-18569.	8.0	17
62	Carbon nanotube supported PtO nanoparticles with hybrid chemical states for efficient hydrogen evolution. Journal of Energy Chemistry, 2021, 58, 364-369.	12.9	16
63	Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 536-545.	14.0	15
64	FeF and Fe2ZrO5 Co-modified hematite for highly efficient solar water splitting. Journal of Energy Chemistry, 2022, 69, 414-420.	12.9	14
65	Carbon nitride supported Ni _{0.5} Co _{0.5} O nanoparticles with strong interfacial interaction to enhance the hydrolysis of ammonia borane. RSC Advances, 2019, 9, 11552-11557.	3.6	13
66	N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation. Journal of Colloid and Interface Science, 2021, 585, 660-667.	9.4	12
67	Black phosphorus nanoflakes decorated hematite photoanode with functional phosphate bridges for enhanced water oxidation. Chemical Engineering Journal, 2021, 425, 131500.	12.7	10
68	Boosting the performance of hematite photoanodes for solar water oxidation by synergistic W-incorporation and Zr-passivation. International Journal of Hydrogen Energy, 2019, 44, 16436-16442.	7.1	9
69	In-situ surface reconstruction in Pt and P co-treated hematite for enhanced water oxidation. Chemical Engineering Journal, 2021, 413, 127416.	12.7	9
70	Water-soluble peroxotitanium complex: A novel strategy to prepare Fe2O3/Fe2TiO5 photoanode with enhanced water oxidation. Journal of Alloys and Compounds, 2022, 898, 162930.	5.5	8
71	Ternary metallic CuxCo1â^'xPtyO/RGO catalyst with internal synergistic effect for efficient hydrolysis of ammonia-borane. Applied Surface Science, 2021, 537, 147823.	6.1	7
72	Hydrogenated hematite nanostructures for high-efficiency solar water oxidation. RSC Advances, 2016, 6, 92206-92212.	3.6	6

#	Article	IF	CITATIONS
73	A high-voltage solar rechargeable device based on a CoPi/BiVO ₄ faradaic junction. Journal of Materials Chemistry A, 2022, 10, 1802-1807.	10.3	6
74	Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO ₂ . Materials Advances, 2020, 1, 2286-2292.	5.4	4
75	The morphological effect on electronic structure and electrical transport properties of one-dimensional carbon nanostructures. RSC Advances, 2017, 7, 21079-21084.	3.6	2